• Title/Summary/Keyword: Bond strengths

Search Result 482, Processing Time 0.026 seconds

Bond strength of denture base resin repaired according to contamination (의치상 수리면 오염원에 따른 수지의 결합강도)

  • Jung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF

THE EFFECTS OF SURFACE TREATMENTS ON SHEAR BOND STRENGTHS OF LIGHT-CURED AND CHEMICALLY CURED GLASS IONOMER CEMENTS TO ENAMEL (법랑질의 표면처리가 광중합형 및 화학중합형 글래스아이오노머 시멘트의 전단결합강도에 미치는 영향)

  • Shin, Kang-Seob;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.223-233
    • /
    • 1995
  • The purpose of this study was to evaluate the effects of surface conditioning with $10\%$ polyacrylic acid, etching with $38\%$ phosphoric acid, and polishing with a slurry of pumice on shear bond strengths of light-cured glass ionomer cement, chemically cured glass ionomer cement, and a composite resin to enamel, and to observe the failure patterns of bracket bondings. Shear bond strengths of glass ionomer cements were compared with that of a composite resin. Metal brackets were bonded on the extracted human bicuspids after enamel surface treatments, and samples were immersed in the $37^{\circ}C$ distilled water bath, and shear bond strengths of glass ionomer cements and a composite resin were measured on the Instron machine after 24hrs passed, and the deboned samples were measured in respect of adhesive remnant index. Scanning electron micrographs were taken of enamel surfaces after various treatments. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. Shear bond strength of light-cured glass ionomer cement showed statistically higher than that of chemically cured glass ionomer cement. 2. Shear bond strengths of light-cured and chemically cured glass ionomer cements to enamel treated with $10\%$ polyacrylic acid and $38\%$ phosphoric acid showed statistically higher than those with a slurry of pumice. 3. According to scanning electron micrographs, enamel surface conditioned with $10\%$ polyacrylic acid is slightly etched and cleaned, that etched with $38\%$ phosphoric acid is severely etched, and that polished with a slurry of pumice is irregulary scretched and not completely cleaned. 4. After debonding, light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid showed less residual materials on the enamel solace than composite resin to enamel etched with $38\%$ phosphoric acid. 5. There was no significant difference in the shear bond strength of light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid and that of composite resin to enamel etched with $38\%$ Phosphoric acid.

  • PDF

BOND STRENGTH AND MICROLEAKAGE IN RESIN BONDING TO TOOTH STRUCTURE (치질접착에서 접착강도와 변연누출)

  • Kim, Jin-Hee;Park, Jeong-Won;Park, Jin-Hoon;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 1999
  • Intuitively, higher bond strengths should result in less leakage. However, the relationship between bond strengths and microleakage value is complex and not clearly understood. The purpose of this study was to evaluate the relationship between tensile bond strengths and microleakage values in the same restorations to understand the behavior of resin bonding to tooth structure. One-hundred and twenty enamel or dentin specimens from freshly extracted bovine mandibular incisors were used. The specimen was treated with 32% phosphoric acid for 15 seconds and rinsed for 20 seconds. the teeth were divided into four groups by means of wet bonding technique or dry bonding. One-Step$^{TM}$ adhesive were applied to the specimen. The specimens were immersed in 2% methylene blue solution for 7 days, and tensile bond strength and microleakage were measured. The results were as follows: 1. Significant negative correlation was found between bond strengths and micro leakage values. Hence, higher bond strengths seem to be associated with lower microleakage, and vice versa (r=-0 50, p<0.05). 2. The Enamel/Wet group showed significantly higher bond strength than Enamel/Dry one, and Dentin/Wet group showed higher strength than Dentin/Dry one (p<0.05). 3. Microleakage was significantly less ill wet bonding than in dry one at dentin (p<0.05), however, there was no significant difference between wet and dry bonding at enamel (p>0.05).

  • PDF

A COMPARATIVE STUDY ON SHEAR BOND STRENGTHS INFLUENCED BY TIME ELAPSED AFTER BRACKET BONDING WITH A LIGHT-CURED GLASS IONOMER CEMENT (광중합형 글래스아이오노머 시멘트의 브라켓 접착후 시간 경과에 따른 전단결합강도의 비교연구)

  • Lee, Ki-Soo;Lim, Ho-Nam;Park, Young Guk;Shin, Kang-Seob
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.605-611
    • /
    • 1995
  • The purpose of this study was to evaluate effects of time on shear bond strengths of a light-cured glass ionomer cement and chemically cured resin cement to enamel, and to observe the failure patterns of bracket bondings. Shear bond strength of a light-cured glass ionomer cement were compared with that of a resin cement. Metal brackets were bonded on the extracted human bicuspids. Specimens were subjected to a shear load(in an Instron machine) after storage at room temperature for 5 and 15 minutes; after storage in distilled water at $37^{\circ}C$ for 1 or 35 days. The deboned specimens were measured In respect of adhesive remnant index. The data were evaluated and tested by ANOVA, Duncan's multiple range test, and t-test, and those results were as follows. 1. The shear bond strength of light-cured glass ionomer cement is higher than that of resin cement at 5 and 15 minutes. 2. The shear bond strengths of both light-cured glass ionomer cement and resin cement increase with time. There was no significant difference in those of both 1 day group and 35 day group 3. Light-cured glass ionomer cement is suitable as orthodontic bracket adhesives

  • PDF

Strengths of Lap Splices Anchored by SD600 Headed Bars (겹침이음 실험을 통한 SD600 확대머리철근의 정착강도 평가)

  • Chun, Sung-Chul;Lee, Jin-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.217-224
    • /
    • 2013
  • Design provisions for the development length of headed bars in ACI 318-08 include concrete compressive strength and yield strength of headed bars as design parameters but do not consider the effects of transvers reinforcement. In addition, they have very strict limitation for clear spacing and material strengths because these provisions were developed based on limited tests. In this study, splice tests using SD600 headed bars with $2d_b$ clear spacing and transverse reinforcement were conducted. Test results show that unconfined specimens failed due to prying action and bottom cover concrete prematurely spalled. The contribution of head bearing on the anchorage strength is only 15% on average implying that unconfined specimens failed before the head bearing was not sufficiently developed. Confined specimens with stirrups placed along whole splice length have enhanced strengths in bearing as well as bond because the stirrups prevented prying action and improved bond capacity. Bond failure occurred in locally confined specimens where stirrups were placed only at the ends of splice length. The stirrups at ends of splice lengths can prevent prying action but the bond capacity did not increase. From regression analysis of test results, an equation to predict anchorage strength of headed bars was developed. The proposed equation consists of bond and bearing contributions and includes transverse reinforcement index. The average ratio of tests to predictions is 1.0 with coefficient of variation of 6%.

A COMPARISON OF THE SHEAR BOND STRENGTHS BETWEEN CONVENTIONAL COMPOSITE SEALANTS AND FLUORIDE-RELEASING SEALANTS (불소유리 전색재와 일반 레진계 전색재의 전단결합강도에 관한 비교연구)

  • Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.85-89
    • /
    • 2000
  • There has recently been some trials to add the fluoride-releasing property to existing fissure sealants and some of them are already commercially available. But, some questions mat naturally be arisen regarding the potential decrease of physical properties by adding the fluoride despite its new caries-inhibiting abilities. This study was performed for the purpose of comparing the shear bond strengths of conventional composite sealant, Fluoride-releasing sealant and glass ionomer sealant, and obtained the results as fellows. 1. Two kinds of composite sealants (Helioseal and Teethmate-A) showed slightly higher bond strength than Fluoride-releasing sealant(Teethmate-F) without any significance(p>0.05). 2. Class ionomer sealant (Fuji III) was much lower than composite sealant in shear bond strength(p<0.05). 3. With the result of this study, it was found that there is little effect on retentive properties of sealants by adding fluoride to amplify the caries-inhibiting properties.

  • PDF

THE SHEAR BOND STRENGTHS OF COMPOSITE RESINS TO GLASS IONOMER CEMENTS BY SURFACE TREATMENT AND ELAPSED TIME (광중합 GIC충전후 경과시간 및 표면처리에 따른 복합레진과의 결합강도에 관한 연구)

  • Chung, Hye-In;Kim, Shin;Chung, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.82-94
    • /
    • 1997
  • For the purpose of establishing the most appropriate method of bonding between glass ionomer liners and composite resin and comparing the materials for sandwich technique, an experiment was performed to measure the shear bond strengths between the two with the variables in the surface treatment of liners and elapsed time till composite buildup. Materials used were Vitrebond and Fuji II LC, each as the restorative and liner respectively, and each group was subdivided by surface treatment (acid etching and sandblasting) and time elapsed from GIC filling to composite buildup (immediately, 1 day, 7 days), consisting 12 groups as a whole. Each subgroup was composed of 10 specimens and the shear bond strength between GIC liners and composite resin was measured under UTM and analyzed. The result were as follows: 1. The shear bond strength between two materials was highest when initially filled Fuji II LC was sandblasted after 1 days and composite built-up (Group FS1). And the lowest value was found when GIC was acid-etched after 7 days and composite built-up (Group FE7). Significant difference was found between the two groups. (P<0.01) 2. In regard of surface treatment of GI liners, acid-etched group (VE) showed higher bond strength than sandblasted group (VS) for Vitrebond. But, the reverse was true for Fuji II LC. (P<0.05) 3. In regard to the time elapsed from GI filling to composite buildup, the group of 1 day elapse showed relatively higher strength for Vitrebond. On the contrary, immediate buildup group (FE0) was stronger for acid-etched group and 1 day elapse group(FS1) was higher for sand-blasted group in Fuji II LC. (P<0.05)

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF GLASSIONOMER CEMENT TO DENTIN SURFACE FOLLOWING ACID TREATMENT (산처리(酸處理)에 따른 상아질(象牙質)에 대한 Glassionomer Cement의 접착강도(接着强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Won-Seob;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.123-129
    • /
    • 1988
  • The purpose of this study was to evaluate the bond strength of glassionomer cement against cut dentin surface which was treated with various surface cleaning agents. 48 freshly extracted human 3rd molars were ground flat through the enamel into the dentin using 600 grit silicone carbide paper under a flow of water. The were divided into four groups by the following cleaning procedure on cut dentin surface; Group I : No surface treatment after grinding with 600 grit silicone carbide paper as control group Group II : Surface treatment with 50% citric acid for 30 seconds. Group III : Surface treatment with 37% phosphoric acid for 30 seconds. Group IV : Surface treatment with 10% poly acrylic acid for 30 seconds. The specimens in 4 groups were immersed in distilled water at $37^{\circ}C$ for 24 hours before testing after cleanising with water-spray and drying with air. Bond strength was measured with Instron Universal Testing Machine (Autograph S-100, Shimadzu, Kyoto, JAPAN). The results were as follows: 1. The bond strengths of group II, III & IV were not seemed to be shown more significant improvement than a group I. 2. The bond strengths in groups which were treated with 50% citric acid, 37% phosphoric acid and 10% polycrylic acid, were ranked 24.70kg/$cm^2$, 22.02kg/$cm^2$ and 31.13kg/$cm^2$, but its difference was not significant, statistically.

  • PDF

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.