• Title/Summary/Keyword: Bond mechanism

Search Result 465, Processing Time 0.026 seconds

Benzoic acid II. The Kinetics and Mechanism of the Hydrolysis to 2-Furyl Chalcone Derivatives (벤조산 유도체 II. Furyl Chalcone 유도체의 가수분해 반응메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Ryu, Wan-Ho;Yang, Cheon-Hoi;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 1993
  • The hydrolysis kinetics of 2-furyl chalcone derivatives $[I]{\sim}[V]$ was investigated by ultraviolet spectrophotometery in 30% dioxane-$H_{2}O$ at $25^{\circ}C$ and the structure of these compounds were ascertained by means of ultraviolet, infrared and NMR spectra. The rate equations which were applied over a wide pH range(pH $1.0{\sim}12.0$) were obtained. The substituent effects on 2-furyl chalcone derivatives $[I]{\sim}[V]$ were studied, and the hydrolysis were facilitated by the electron attrecting groups. On the basis of the rate equation, substituent effect, general base effect and final product. the plausible hydrolysis mechaism was proposed: Below pH 4.0, it was only proportional to concentration of hydronium ion, at pH $4.0{\sim}9.0$, neutral $H_{2}O$ molecule competitively attacked on the double bond. By contrast, above pH 9.0, it was proportional to concentration of hydroxide ion.

Synthesis of Molecularly Imprinted Polymers for Chiral (S)-Ibuprofen and Their Molecular Recognition Mechanism (키랄(S)-이부푸로펜 함유 고분자의 합성과 제조된 고분자의 분자 인식 메카니즘)

  • Huangfu, Fengyun;Wang, Bing;Sun, Yan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.288-293
    • /
    • 2013
  • A group of molecularly imprinted polymers (MIPs) with specific recognition for chiral (S)-ibuprofen were successfully prepared based on hydrogen bonds, utilizing ${\alpha}$-methacrylic acid as a functional monomer. The IR analysis of MIPs showed that the blue- and red-shifted hydrogen bonds were formed between templates and functional monomers in the process of self-assembly imprinting and re-recognition, respectively. According to UV-Vis analysis, we found that the ratio of host-guest complexes between template molecule and functional monomer was 1:1. The effect of cross-linker's quantity on the polymerization was studied by transmission electron microscope (TEM). The adsorption selectivity experiments indicated that MIPs exhibited higher selectivity to (S)-ibuprofen than those to ketoprofen and (R)-ibuprofen, (S)-ibuprofen's structural analogs.

Regulation Mechanism of Redox Reaction in Rubredoxin

  • Tongpil Min;Marly K. Eidsness;Toshiko Ichiye;Kang, Chul-Hee
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.149-153
    • /
    • 2001
  • The electron transfer reaction is one of the most essential processes of life. Not only does it provide the means of transforming solar and chemical energy into a utilizable form for all living organisms, it also extends into a range of metabolic processes that support the life of a cell. Thus, it is of great interest to understand the physical basis of the rates and reduction potentials of these reactions. To identify the major determinants of reduction potentials in redox proteins, we have chosen the simplest electron transfer protein, rubredoxin, a small (52-54 residue) iron-sulfur protein family, widely distributed in bacteria and archaea. Rubredoxins can be grouped into two classes based on the correlation of their reduction potentials with the identity of residue 44; those with Ala44 (ex: Pyrococcus furiosus) have reduction potentials that are ∼50 mV higher than those with Va144 (ex: Clostridium pasteurianum). Based on the crystal structures of rubredoxins from C. pasteurianum and P. furiosus, we propose the identity of residue 44 alone determines the reduction potential by the orientation of the electric dipole moment of the peptide bond between 43 and 44. Based on 1.5 $\AA$ resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins from C. pasteurianum, the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated.

  • PDF

Anti-inflammatory Activity of 3,6,3'-Trihydroxyflavone in Mouse Macrophages, In vitro

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3169-3174
    • /
    • 2014
  • Numerous studies have examined the role of flavonoids in modulating inflammatory responses in vitro. In this study, we found a novel flavonoid, 3,6,3'-trihydroxyflavone (1), with anti-inflammatory effects. Anti-inflammatory activity and mechanism of action were examined in mouse macrophages stimulated with lipopolysaccharide (LPS). Our results showed that the anti-inflammatory effects of 1 are mediated via p38 mitogen-activated protein kinase (p38 MAPK), Jun-N terminal kinase (JNK), and the extracellular-signal-regulated kinase (ERK) pathway in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Binding studies revealed that 1 had a high binding affinity to JNK1 ($1.568{\times}10^8M^{-1}$) and that the 3- and 6-hydroxyl groups of the C-ring and A-ring of 1 participated in hydrogen bonding interactions with the side chains of Asn114 and Lys55, respectively. The oxygen at the 3' position of the B-ring formed a hydrogen bond with side chain of Met111. Therefore, 1 could be a potential inhibitor of JNKs, with potent anti-inflammatory activity.

Studies on the Stability of Trimebutine maleate in Aqueous Solution (수용액 중 Trimebutine maleate의 안정성)

  • Park, Jong-Hyen;Rhee, Gye-Ju
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.415-421
    • /
    • 1990
  • The effects of temperature, pH, light and concentration on the degradation of trimebutine maleate in aqueous solution were investigated on the basis of accelerated stability analysis, and the stabilization of the solution was attempted by addition of several additives. The decomposition of trimebutine maleate in solution followed first-order reaction the was not only accelerated by temperature elevation but also the lower the concentratin the more speeded up the reaction. The decomposition mechanism of trimebtine could be confirmed by hydrolysis of ester bond in the structure. It was assumed trimebutine maleate is so photosensitive that the solution of the drug underwent accelerated decomposition under UV rays. What is more, the degradation of trimebutine solution was supposed to catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of ester, and the solution was most stable over the range of pH 2-2.8 in solution. The additives, citric acid, asparitc acid and glutamic acid, inhibited considerably the decomposition of the drug solution, and these additives might be used as stabilizers in trimebutine maleate solution.

  • PDF

Direct Sealing Glass-Ceramics to Metal (직접 결합방법에 의한 Glass-Ceramics과 금속의 접합)

  • Kim, Hwan;Lee, Ki-Kang
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 1981
  • Glass-ceramics possessed a number of characteristics which suggested their suggested their use for sealing to metals. The choice of particular glass-ceramics compositions for this application is governed by various factors, including workability of the glasses, thermal expansion characteristics and the matching of these to appropriate metals. Other properties, such as mechanical strength, determined the performance of glass-ceramics to metal seals. The purpose of the present study was to investigate direct sealing behaviour of copper to $Li_2O-ZnO-SiO_2$ system glass-ceramics. The design of the seal was a concentric seal which might contribute to the strong bond formation by providing compressive stress during thermal excursions. Tensile strengths of sealing layers were measured by Instron test machine. The layers were examined by electron probe microanalyzer. Crsystallization rate was increased with the amount of ZnO or $Li_2O$, and ZnO increased the sealing strength, but $Li_2O$ lowered it. Sealing mechanism was due to the formation of metal oxides, which acted as binder between copper and glass-ceramics. The nickle-plated copper seal with 10% $Li_2O$ and 30% ZnO was the most strong seal, and its sealing strength was more than 56kg/$\textrm{cm}^2$.

  • PDF

The study on dry etching characteristics of ZnO thin films using high density plasma (고밀도 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Heo, Keyong-Moo;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.174-174
    • /
    • 2010
  • In this article, the dry etching mechanism of ZnO thin films in $N_2/Cl_2$/Ar gas chemistry was investigated. The ZnO thin films were deposited on Si substrate using Atomic layer deposition. The etching experiments were performed by inductively coupled plasma system. The maximum etch rate was104.5 nm/min and the highest selectivity of ZnO over $SiO_2$ was 3.3. Etching rate was measured by surface profiler. And the chemical reaction on the surface of the etched ZnO thin films was investigated by x-ray photo electrons pectroscopy. As a result of XPS, $Zn2p_{3/2}$ peak shifted toward a higher binding energy and the O-O and N-O bond were obtained from the sample of ZnO thin film which after plasma treatment.

  • PDF

Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5D/3D Integrated System

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2016
  • We propose nano-scale Cu direct bonding technology using ultra-high density Cu nano-pillar (CNP) with for high stacking yield exascale 2.5D/3D integration. We clarified the joining mechanism of nano-scale Cu direct bonding using CNP. Nano-scale Cu pillar easily bond with Cu electrode by re-crystallization of CNP due to the solid phase diffusion and by morphology change of CNP to minimize interfacial energy at relatively lower temperature and pressure compared to conventional micro-scale Cu direct bonding. We confirmed for the first time that 4.3 million electrodes per die are successfully connected in series with the joining yield of 100%. The joining resistance of CNP bundle with $80{\mu}m$ height is around 30 m for each pair of $10{\mu}m$ dia. electrode. Capacitance value of CNP bundle with $3{\mu}m$ length and $80{\mu}m$ height is around 0.6fF. Eye-diagram pattern shows no degradation even at 10Gbps data rate after the lamination of anisotropic conductive film.

Electrochemical Reduction of 0,0-Dimethyl-0-(3-Methyl-4-Nitrophenyl)-phosphorothioate(Sumithion®) in Acetonitrile Solution (Acetonitrile 용액중(溶液中)에서 0,0-Dimethyl-0-(3-Methyl-4-Nitrophenyl)-phosphorothioate(Sumithion®)의 전기화학적(電氣化學的) 환원반응(還元反應))

  • Park, Seung Heui;Sung, Nack Do
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.315-321
    • /
    • 1984
  • The electrochemical reduction of 0,0-dimethyl-0-(3-methyl-4 -nitrophenyl)-phosphorothioate ($Sumithion^{(R)}$) in acetonitrile solution has been studied by direct current (DC), differential pulse (DP) polarography and cyclic voltammetry methods. The irreversible electron-transfer chemical reaction (EC) mechanism of Sumithion proceeds by six electron-transfer to form radical and reduction of three-step which undergoes single bond of the phosphorus atom & phenoxy group by electron-transfer and protonation cleaved to give p-hydroxyamino-m-cresol and dimethylthiophosphonate as major product.

  • PDF

Density Functional Theory Study of Silicon Chlorides for Atomic Layer Deposition of Silicon Nitride Thin Films

  • Yusup, Luchana L.;Woo, Sung-Joo;Park, Jae-Min;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.1-211.1
    • /
    • 2014
  • Recently, the scaling of conventional planar NAND flash devices is facing its limits by decreasing numbers of electron stored in the floating gate and increasing difficulties in patterning. Three-dimensional vertical NAND devices have been proposed to overcome these issues. Atomic layer deposition (ALD) is the most promising method to deposit charge trap layer of vertical NAND devices, SiN, with excellent quality due to not only its self-limiting growth characteristics but also low process temperature. ALD of silicon nitride were studied using NH3 and silicon chloride precursors, such as SiCl4[1], SiH2Cl2[2], Si2Cl6[3], and Si3Cl8. However, the reaction mechanism of ALD silicon nitride process was rarely reported. In the present study, we used density functional theory (DFT) method to calculate the reaction of silicon chloride precursors with a silicon nitride surface. DFT is a quantum mechanical modeling method to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. The bond dissociation energy of each precursor was calculated and compared with each other. The different reactivities of silicon chlorides precursors were discussed using the calculated results.

  • PDF