• Title/Summary/Keyword: Bond mechanism

Search Result 465, Processing Time 0.03 seconds

Kinetic Studies on the Nucleophilic Addition of Thiourea to ${\beta}$-Nitrostyrene Derivatives (${\beta}$-Nitrostyrene 유도체에 대한 Thiourea의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Yeun-Soo Chung;Myung-Sook Chung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.268-274
    • /
    • 1991
  • The rate constants for the nucleophilic addition reactions of thiourea to ${\beta}$-nitrostyrene derivatives(p-H, p-Cl, p-CH$_3$, p-OCH$_3$, p-NO$_2$) were determined by UV spectrophotometer and rate equations which can be applied over a wide pH ranges were obtained. On the basis of substituent effect, general base catalysis and rate equations, a reaction mechanism was proposed and revealed quantitively. Above pH 9.00, sulfide anion adds to the double bond(Michael type addition) and between pH 7.00 and 9.00, the neutral molecules and its anions add to the double bond competitively. Below pH 7.00, the addition reaction to double bond is initiated by the addition of neutral thiourea molecule.

  • PDF

Kinetic Studies of Nucleophilic Substitution Reaction of para-Substituted Benzoyl Compounds with Pyridines (파라치환 벤조일화합물과 피리딘의 친핵성치환반응에 대한 속도론적 연구)

  • Jeong Wha Kim;Tae Sup Uhm;Ik Choon Lee;In Sun Koo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • Kinetic studies of nucleophilic substitution reaction of substituted benzoyl cyanides and benzoyl chlorides with pyridines were conducted at 25$^{\circ}C$ in pure acetone solvent. Results showed that (ⅰ) magnitudes of $_{\rho}_S$, $_{\rho}_N$ and ${\beta}$ associated with a change of substituent in the nucleophile indicate relatively advanced bond-formation in the transition state, (ⅱ) the potential energy surface model is able to predict the reaction mechanism, but it is unable to predict the transition state variation to a more product-like transition state, where bond-formation is much more progressed than bond breaking, upon changing the leaving group to that with better leaving ability (ⅲ) the quantum mechanical model predicted the product-like transition state and slightly better leaving ability of CN- as compared with Cl-.

  • PDF

Application of Bond Valence Method to Estimate the Valence Charge Distributi on in the Metal-to-Oxygen Bonding Spheres in Perovskites

  • Nhat, Hoang Nam;Chau, Dinh Van;Thuong, Dinh Van;Hang, Nguyen Thi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.75-92
    • /
    • 2015
  • This paper presents the application of the bond valence method to estimate the valence charge distribution in several perovskite systems: $La_{{\tilde{1}}x}Pb_xMnO_3$ (x=0.1-0.5), $La_{0.6}Sr_{0.{\tilde{4}}x}Ti_xMnO_3$ (x=0.0-0.25) and $La_{{\tilde{1}}x}Sr_xCoO_3$ (x=0.1-0.5); the reviewing of their crystal structures is also incorporated. The results showed the failure of the elastic bonding mechanism in all studied systems and revealed the general deficit of the valence charge in their unit cells. This valence deficit was not associated with the structural defects and was not equally localized in all coordination spheres. As the content of substitution increased, the charge deficit declined systematically from balanced level, signifying the transfer of valence charge from the ${\tilde{B}}O_6$ to ${\tilde{A}}O_{12}$ spheres. This transfer depended on the valence deviation of spheres and the average reached near 2 electron per unit cell. The possible impact of the limitted accuracy of the available structural data on the bond valence results has also been considered.

Technical Trend of Concrete Member with GFRP Bar and Tension Stiffening Effect (GFRP 보강근 배근 콘크리트 기술동향 및 인장강화 효과 분석)

  • Won-Jun Lee;Seong-Cheol Lee;Jung-Woo Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.433-448
    • /
    • 2024
  • Steel rebar is commonly used as reinforcement in reinforced concrete (RC) structures. However, steel rebar corrodes over time, leading to a significant reduction in structural safety as the structure ages. Therefore, Glass Fiber Reinforced Plastic (GFRP) rebar, which is not prone to corrosion, has gained attention as a replacement for conventional steel reinforcement. This study investigates the fundamental technology required for applying GFRP rebar to concrete members. Based on this, the bond behavior and tension stiffening effect of GFRP-reinforced members were analyzed. The analysis revealed that key properties of GFRP rebar, such as bond behavior, rebar diameter, and reinforcement ratio, are major factors influencing the tension stiffening effect. To further expand the application of GFRP rebar,it is expected that a new model that accurately reflects the tension stiffening effect will be required.

Molecular Orbital Anaysis of Water Activation on TiO2(110) Surface (TiO2(110) 표면에 흡착된 물분자의 결합 활성화에 관한 MO 연구)

  • Kang, Dae-Bok;
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.179-186
    • /
    • 2002
  • A molecular orbital analysis based on the extended Huckel calculations has been carried out to study the OH bond activation of water on the $TiO_2$(110) surface. $H_2O$ binds with its axis perpendicular to the surfac on top of the five-coordinate $Ti^{4+}$ atom via its $3a_1$ orbital. In this bonding situation, the two-coordinated bridging $O^{2-}$ atom ($O_b$, basic site) on $TiO_2$(110) is too distant from an H atom of water to form hydrogen-bondig interactions with water that facilitate O-H bond cleavage. It has been elucidated that the O-H bond is appreciably weakened when the water molecule is tilted to give a hydrogen bond with the $O_b$ atom. This mechanism includes mutual transfer of electron density from the $3a_1$ orbital of the water molecule to the $Ti^{4+} 3d_{z2}$ orbital and from the $O_b$ P orbitals to the $2b_1$ of the adsorbed water molecule This should result in lengthening of the O-H bond in the surface complex and the subsequent dissociation into the fragments OH and H.

Preparation and Stability of Silyl Adlayers on 2×1-Reconstructed and Modified Si(100) Surfaces (Si(100)-2×1 표면과 개질된 Si(100) 표면 상에서 실릴 (Silyl) 흡착충의 형성과 안정성)

  • Jo, Sam-K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Saturation-coverage silyl, $-SiH_3(a)$, overlayers were prepared from $Si_2H_6$ adsorption on three comparative surfaces: clean unmodified; D-precovered; and atomically roughened Si(100). Together with its precursor-mediated adsorption behavior, the surface reactivity of $Si_2H_6$ was found to be the highest on the unmodified Si(100)-$2{\times}1$ surface. This was correlated with its dissociative adsorption mechanism, in which both the $H_3Si-SiH_3$ bond scission and the dual surface $Si-SiH_3(a)$ bond formation require a surface dangling bond 'pair'. The unusually high thermal stability of $-SiH_3(a)$ on the unmodified surface was ascribed to a nearly close-packed $-SiH_3(a)$ coverage of ${\sim}0.9$ monolayer and the consequent lack of dangling bonds on the silyl-packed surface.

The study of fractural behavior of repaired composite (수리된 복합 레진 수복물의 파괴 거동에 관한 연구)

  • Park, Sang-Soon;Nam, Wook;Eom, Ah-Hyang;Kim, Duck-Su;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.461-472
    • /
    • 2010
  • Objectives: This study evaluated microtensile bond strength (${\mu}TBS$) and short-rod fracture toughness to explain fractural behavior of repaired composite restorations according to different surface treatments. Materials and Methods: Thirty composite blocks for ${\mu}TBS$ test and sixty short-rod specimens for fracture toughness test were fabricated and were allocated to 3 groups according to the combination of surface treatment (none-treated, sand blasting, bur roughening). Each group was repaired immediately and 2 weeks later. Twenty-four hours later from repair, ${\mu}TBS$ and fracture toughness test were conducted. Mean values analyzed with two-way ANOVA / Tukey's B test ($\alpha$= 0.05) and correlation analysis was done between ${\mu}TBS$ and fracture toughness. FE-SEM was employed on fractured surface to examine the crack propagation. Results: The fresh composite resin showed higher ${\mu}TBS$ than the aged composite resin (p < 0.001). Mechanically treated groups showed higher bond strength than non-mechanically treated groups except none-treated fresh group in ${\mu}TBS$ (p < 0.05). The fracture toughness value of mechanically treated surface was higher than that of non-mechanically treated surface (p < 0.05). There was no correlation between fracture toughness and microtensile bond strength values. Specimens having high KIC showed toughening mechanism including crack deviation, microcracks and crack bridging in FE-SEM. Conclusions: Surface treatment by mechanical interlock is more important for effective composite repair, and the fracture toughness test could be used as an appropriate tool to examine the fractural behavior of the repaired composite with microtensile bond strength.

Selective Separation of Amino Acid Mixture Using H2O-CH2Cl2-H2O Liquid Membrane containing p-Dimethylaminobenzaldehyde, 1-Napthol and Sulfosalicylic acid as a Carrier (II) (p-Dimethylaminobenzaldehyde, 1-Naphtol, Sulfosalicylic acid 등의 Carrier를 함유하는 H2O-CH2Cl2-H2O Liquid Membrane을 이용한 아미노산의 선택적 분리(II))

  • Park, Chung Oh;Hong, Jae Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • A bulk liquid membrane system was introduced for selective separation of an amino acid mixture. We confirmed p-diamethylaminobenzaldehyde (DAB), sulfosalicylic acid (SSA) and 1-naphtol were very useful carriers for selective separation of an amino acid mixture. As a result, Ala, Leu, Val, Phe and Ile were successfully separated by SSA, 1-naphtol in basic condition, 1-naphtol in weak acidic condition, DAB in strong acidic condition and DAB in strong basic condition. The separation mechanism was proposed by ion pair mechanism in the case of SSA and 1-naphtol and Imine bond formation mechanism was also introduced for DAB.

  • PDF

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won;Chuna, Sun-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1359-1363
    • /
    • 2008
  • Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The $pK_a$ at the center of the Brønsted curvature, defined as $pK_a^o$, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow$ 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k_2/k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, $k_1$ has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.