• 제목/요약/키워드: Bond load

검색결과 408건 처리시간 0.03초

Time Dependent Extension and Failure Analysis of Structural Adhesive Assemblies Under Static Load Conditions

  • Young, Patrick H.;Miller, Zachary K.;Gwasdacus, Jeffrey M.
    • 접착 및 계면
    • /
    • 제21권1호
    • /
    • pp.6-13
    • /
    • 2020
  • The objective of the current study is to characterize the long-term stability and efficacy of a structural adhesive assembly under static load. An apparatus was designed to be used in the Instron tensile test machine that would allow for real time modeling of the failure characteristics of an assembly utilizing a moisture- cure adhesive which was bonded to concrete. A regression model was developed that followed a linear - natural log function which was used to predict the expected life of the assembly. Evaluations at different curing times confirmed the structure was more robust with longer cure durations prior to loading. Finally, the results show that under the conditions the assembly was tested, there was only a small amount of inelastic creep and the regression models demonstrated the potential for a stable structure lasting several decades.

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure

  • Chen, Bingzhuo;Yang, Lu;Lu, Zhicen;Meng, Hongliang;Wu, Xinyi;Chen, Chen;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.313-323
    • /
    • 2019
  • PURPOSE. Shear bond strength (SBS) test is the most commonly used method for evaluating resin bond strength of zirconia, but SBS results vary among different studies even when evaluating the same bonding strategy. The purpose of this study was to promote standardization of the SBS test in evaluating zirconia ceramic bonding and to investigate factors that may affect the SBS value of a zirconia/resin cement/composite resin bonding specimen. MATERIALS AND METHODS. The zirconia/resin cement/composite resin bonding specimens were used to simulate loading with a shear force by the three-dimensional finite element (3D FE) modeling, in which stress distribution under uniform/non-uniform load, and different resin cement thickness and different elastic modulus of resin composite were analyzed. In vitro SBS test was also performed to validate the results of 3D FE analysis. RESULTS. The loading flat width was an important affecting factor. 3D FE analysis also showed that differences in resin cement layer thickness and resin composite would lead to the variations of stress accumulation area. The SBS test result showed that the load for preparing a SBS specimen is negatively correlated with the resin cement thickness and positively correlated with SBS values. CONCLUSION. When preparing a SBS specimen for evaluating bond performance, the load flat width, the load applied during cementation, and the different composite resins used affect the SBS results and therefore should be standardized.

반복하중하의 FRP 시트 종류에 따른 부착특성 (Bond Characteristics of FRP sheet to Various Types under Cyclic Load)

  • 고훈범
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.131-138
    • /
    • 2008
  • 최근 지진, 노후화 등에 따라 손상된 많은 콘크리트 구조물을 보강하기 위하여 고강도이면서 가볍고 내구성이 뛰어난 특성을 가지고 있는 FRP(Fiber-reinforced polymer) 시트가 구미에서 뿐만 아니라 우리나라에서도 널리 사용되고 있으며 관련연구도 활발히 체계적으로 이루어지고 있다. 일반적으로 FRP 시트로 보강된 RC구조물은 지진, 교통, 온도 등에 의해 자주 반복하중을 받는다. 그러나 대부분의 연구가 일축 하중하에 이루어진 경우가 대부분이며 이러한 연구결과를 토대로 FRP의 부착특성을 확인하고 있으며 다양한 부착모델을 제안하고 있다. 이러한 관점에서 본 연구에서는 아라미드섬유, 탄소섬유, 폴리아세탈 섬유와 매수를 변수로 하여 총 18개의 시험체를 제작하고 최대부착강도, 최대변위, 변형률을 측정하고 그 결과에 근거하여 부착응력, 슬립을 계산하여 반복하중하의 FRP 시트와 콘크리트의 부착특성을 미시적으로 살펴보았다.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

Crack development depending on bond design for masonry walls under shear

  • Ural, A.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.257-266
    • /
    • 2012
  • Walls are the most important vertical load-carrying elements of masonry structures. Their bond designs are different from one country to another. This paper presents the shear effects of some structural bond designs commonly used for masonry walls. Six different bond designs are considered and modeled using finite element procedures under lateral loading to examine the shear behavior of masonry walls. To obtain accurate results, finite element models are assumed in the inelastic region. Crack development patterns for each wall are illustrated on deformed meshes, and the numerical results are compared.

보 단부 부착시험체에 의한 높은마디 철근의 부착성능 (Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens)

  • 서동민;양승열;홍기섭;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

지압각 감소이론을 이용한 높은마디면적 철근의 부착강도 해석 (Bond Strength Analysis of High Relative Rib Area Bars Using Decreasing Bearing Angle Theory)

  • 양승열;서동민;박영수;홍건호;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.185-188
    • /
    • 2005
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond strength of ribbed reinforcing bars tends to split concrete cover, by wedging action, or shear the concrete in front of the ribs. In this study, using a reducing bearing angle theory, bond strengths of beam end specimen are predicted. Values of bond strength obtained using the analytical model are in good agreement with the bond test results. The analytical model provides insight into bond mechanism and the effects of bearing angle on the bond strength of deformed bars to concrete.

  • PDF

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.