• 제목/요약/키워드: Bond development length

검색결과 78건 처리시간 0.022초

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Bond behavior investigation of ordinary concrete-rebar with hinged beam test and eccentric pull-out test

  • Arslan, Mehmet E.;Pul, Selim
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.587-593
    • /
    • 2020
  • In this study, bond behavior of ordinary concrete and rebars with different diameters and development length was investigated by using Hinged Beam Test (HBT) and Eccentric Pull-Out Test (EPT) comparatively. For this purpose, three different rebar size and development length depending on rebar diameter were chosen as variables. Three specimens were produced for each series of specimens and totally 54 specimens were tested. At the end of the tests it was observed that obtained results for both tests were quite similar. On the other hand, increased bar size, especially for the specimen with 14 mm bar size and 14 development length (lb), caused shear failure of test specimens. This situation infers that when bigger bar size and lb are used in such test, dimensions of test specimens should be chosen bigger and stirrups should be used for producing of test specimens to obtain more adequate result by preventing shear failure. Also, a nonlinear regression analysis was employed between HBT and EPT results. There was a high correlation between the EPT values, lb, rebar diameters and estimated theoretical HBT. In addition, at the end of the study an equation was suggested to estimate bond strength for HBT by using EPT results.

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

정모멘트 철근의 정착 (Development of Positive Moment Reinforcement)

  • 홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.421-426
    • /
    • 1998
  • Current code provisions for the development of positive moment reinforcement is reviewed and criticized in this paper. Both the flexural bond and development length concepts are neccesary to consider anchorage requirement of reinforcement at beam ends. The curent design codes show unconservatism for the detailing of reinforcement at the beam ends. This study proposes a new design formula for the development of positive moment reinforcement.

  • PDF

전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델 (Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement)

  • 천성철;홍성걸;오보환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구 (Tension Lap Splice Length in High-Strength Concrete Flexural Members)

  • 이기열;김우;이화민
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.753-761
    • /
    • 2009
  • 이 논문은 철근콘크리트 휨부재의 인장겹침이음 영역에서의 정착저항능력에 대한 콘크리트 강도와 피복두께의 영향을 알아보기 위하여 총 24개의 beam-end 실험체의 실험 결과를 정리 분석한 것이다. 콘크리트 강도가 증가할수록 부착응력이 커지고 전달길이가 줄어든다는 부착특성과 얇은 피복에서 쉽게 발생하는 쪼갬균열 및 취성적인 균열 진전과 같은 균열거동을 근거로 하여 현행 설계기준의 등분포부착응력 가정에 의한 정착길이 규정을 고강도 콘크리트에도 그대로 적용할 수 있는지 조사하였다. 그 결과 콘크리트 강도에 따른 정착저항능력은 피복두께의 영향을 크게 받고 있으며, 고강도 콘크리트에서는 현행 설계기준 규정보다 짧은 겹침이음길이를 갖더라도 충분한 안전율을 확보하는 것으로 나타났다. 이러한 실험 결과로부터 고강도 콘크리트의 정착길이는 제곱근 압축강도의 반비례가 아닌 압축강도에 직접적으로 반비례함을 확인하였으며, 현 설계기준에서 보통강도 콘크리트에 적용하는 동일 매입길이에 대한 등 분포부착응력 가정이 아닌 새로운 정착길이 계산식을 제안하였다.

고강도콘크리트의 부착특성에 관한 연구 (A Study on the Bond Properties of High Strength Concrete)

  • 홍건호;신영수;정일영
    • 콘크리트학회지
    • /
    • 제8권5호
    • /
    • pp.156-162
    • /
    • 1996
  • 고강도콘크리트에 매립된 철근의 부착특성을 실험적으로 규명하기 위하여 80개의 보단부형 시험체에 대한 부착실험을 수행하였다. 실험의 변수로는 콘크리트의 압축강도를 주변수로 선정하고 그 외 부착특성에 영향을 미치는 여러 요인 중 부착길이, 피복두께, 철근 직경 등을 변수로 선정하여 각 변수의 영향을 콘크리트의 압축강도와 비교하도록 하였다. 본 연구의 주요 결과를 살펴보면 고강도콘크리트에서의 부착강도는 부착길이의 증가에 직접적으로 비례하지는 않는 것으로 나타났다. 이러한 결과는 콘크리트의 강도가 증대함에 따라 더욱 큰 영향을 미치게 되는데 고강도콘크리트에서는 부착길이를 증가시키더라도 철근과의 부착강도는 상당히 제한된 증가를 나타나는데 불과하였다. 한편 부착강도와 피복두께와의 관계는 콘크리트의 강도에 관계없이 선형으로 비례하는 것으로 나타났으며, 특히 콘크리트의 강도가 증가함에 따라 그 비례상수는 오히려 더 증가함을 알 수 있었다.

Modeling of bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.355-368
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods are used as reinforcement (prestressed or not) to concrete. FRP composites can also be combined with steel to form hybrid reinforcing rods that take advantage of the properties of both materials. In order to effectively utilize these rods, their bond behavior with concrete must be understood. The objective of this study is to characterize and model the bond behavior of hybrid FRP rods made with epoxy-impregnated aramid or poly-vinyl alcohol FRP skins directly braided onto a steel core. The model closely examines the split failure of the concrete by quantifying the relationship between slip of the rods resulting transverse stress field in concrete. The model is used to derive coefficients of friction for these rods and, from these, their development length requirements. More testing is needed to confirm this model, but in the interim, it may serve as a design aide, allowing intelligent decisions regarding concrete cover and development length. As such, this model has helped to explain and predict some experimental data from concentric pull-out tests of hybrid FRP rods.

고강도 콘크리트 구조물의 철근 부착 및 이음에 대한 연구 (Bond & Lapped Splices in High-Strength Concrete Structures)

  • 김준성
    • 한국농공학회지
    • /
    • 제39권6호
    • /
    • pp.122-130
    • /
    • 1997
  • An experimental study was conducted to evaluate the bond performance of reinforcing bars embedded in high-strength concrete. Four bond specimens and ten beam splice specimens using concrete with compressive strength of 246kgf/$cm^2$ and 64lkgf/$cm^2$ were tested. The effect of several variables on basic development length and compressive strength of concrete is discussed in splice specimens. The test results showed that the current trend in concrete specification of making the splice length longer to compensate for having smaller cover and spacing may not be an effective approach.

  • PDF

SC구조의 벽-바닥 접합부의 정착강도에 관한 연구 (A Study on the Bond Strength of Wall-Slab Joint of Steel Plate-Concrete Structures)

  • 최경민;김기성;김병국;김원기;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.321-324
    • /
    • 2006
  • An experimental study on the bond strength of wall-slab joint in SC(steel plate-concrete) structure was performed. Six-full scale specimens were tested. Specimens were constructed with key variables, such as, development length, location of the bar and quantity of the shear bar. The experimental results, show that as the development length and quantity of the shear bar increase, the bond strength increases. As the bars is located on the inside the stud bolt, the bond performance was highly increased compared to the bars located out of plane of the stud bolts.

  • PDF