• 제목/요약/키워드: Bond Properties

검색결과 1,128건 처리시간 0.03초

탄소섬유쉬트와 콘크리트의 부착 (Bond between Carbon Fibers Sheet and Concrete)

  • 최근도;류화성;최기선;이한승;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1019-1024
    • /
    • 2000
  • Carbon fiber sheet has been widely used for the strengthening of the concrete buildings structures due to its excellent physical properties such as high strength, lightness and high durability. Bond strength or behavior, on the other, hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Also the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to th concrete by the direct pull-out test and the tensile-shear test methods. From the tests, the average bond stress, $$\tau$_{y}$ and the effective bond length, $$\ell$_{u}$ are acquired.

Bond Strength of Mortar mixed Activated Hwangtoh

  • Go, Seong-Seok;Yeo, Sang-Ku;Lee, Hyun-Chul
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.468-477
    • /
    • 2012
  • This study aimed to mix and test mortar incorporating activated Hwangtoh to improve the Hwangtoh brick bond strength of brick structures. To do this, the bond strength correlation of mortar was analyzed by means of materials and experiment factors and levels, and the optimum conditions were suggested after analyzing the physical properties of brick and the mix ratio of mortar and additive. Furthermore, the compressive strength and bond strength were found to be in inverse proportion, and in terms of the materials and mixing level, W/C ratio, substitution ratio of activated Hwangtoh, and fine aggregate grading were shown to have a considerable influence on the strength. In conclusion, the optimum mixing conditions to improve the bond strength are found to set W/C ratio at 65% and replacmenet ratio of activated Hwangtoh at 10%.

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

레진시멘트, 표면처리 및 열순환에 따른 IPS Empress의 전단결합강도 (EFFECTS OF RESIN CEMENTS, CERAMIC SURFACE TREATMENTS AND THERMOCYCLING ON SHEAR BOND STRENGTH OF IPS EMPRESS CERAMIC)

  • 한정민;유영대;이용근;임미경;이수종
    • Restorative Dentistry and Endodontics
    • /
    • 제24권3호
    • /
    • pp.473-481
    • /
    • 1999
  • This study evaluated the shear bond properties of IPS Empress glass ceramic to enamel and dentin surfaces with three ceramic surface treatments, and three resin cements. The influence of thermocycling was also investigated. The purpose of this study was to investigate the influences of resin cements, ceramic surface treatments, and thermocycling on shear bond properties. Ninety freshly extracted, noncarious human molars were selected for this study. The surface treatments of ceramic were etching <5.0% hydrofluoric acid, application of silane coupling agents(Tokuso Ceramic Primer, Clearfil porcelain bond, Monobond-S), and the combination of the two methods. Empress cylinders were bonded to enamel and dentin surfaces with three kinds of resin cements(Bistite resin cement, Panavia 21, Variolink). The specimens were aged in $37^{\circ}C$ distilled water for 24 hours. Half of the specimens were then thermocycled 500times between $5^{\circ}C$ and $55^{\circ}C$ with a dwell time of 15 seconds. Each specimen was debonded in shear mode and measured shear bond properties by using the universal testing machine(Zwick 020, Germany). The data were analyzed by SPSS/PC+(one-way ANOVA, Scheffe' s test and t-test). The results were as follows : 1. Without thermocyling, there was significant difference of shear bond strength to enamel surface between Bistite Resin Cement and Panavia 21 in case of etched and silane-treatment(p<0.05). 2. Without thermocyling, the shear bond strength of a group treated with silane and etching was significantly higher than that of a group treated with silane or etching with the application of Panavia 21 and Variolink(p<0.05). 3. A group treated with etching with the application of Variolink only showed a decrease of shear bond strength after thermocycling(p<0.05).

  • PDF

도말층 제거와 상아질의 부위가 치수강 내부 상아질에 대한 수종 상아질 결합제의 전단결합성질에 미치는 영향 (THE EFFECT OF SMEAR LAYER REMOVAL AND POSITION OF DENTIN ON SHEAR BOND PROPERTIES OF DENTIN BONDING SYSTEMS TO INTERNAL CERVICAL DENTIN)

  • 임연아;유영대;이용근;이수종;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제24권3호
    • /
    • pp.465-472
    • /
    • 1999
  • The aim of this study was to determine the shear bond properties of four dentin bonding systems to internal cervical dentin, and to investigate the effect of the pretreatment for removing smear layer and position of dentin on shear bond strength of dentin bonding agents. The materials tested in this study were consisted of four commercially available dentin bonding systems[Allbond 2(AB), Clearfil Linerbond 2(CL), Optibond FL(OP), Scotchbond Multi-purpose(SB)], a restorative light-cured composite resin[Z100]J and a chelating agent[RC-prep(RC)]. Fifty-six freshly extracted human molars were used in this study. Dentin specimens were prepared by first cutting the root of the tooth 1mm below the cementoenamel junction with a diamond bur in a high speed handpiece under air-water coolant, and then removing occlusal part at pulp horn level by means of a second parallel section, The root canal areas were exposed by means of cutting the dent in specimens perpendicular to the root axis. Dentin specimens were randomly assigned to two groups(pretreated group, not-pretreated group) based on the pretreatment method of dentin surface. In pretreated group, RC was applied to dentin surface for 1minute and then rinsed with NaOCl. In not-pretreated group, dentin surface was rinsed with saline Each groups were subdevided into four groups according to dentin bonding systems. Four dentin bonding systems and a restorative resin were applied according to the directions of manufacturer. The dentin-resin specimens were embedded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of $1{\times}1mm$. The cut specimens were divided into three groups according to the position of internal cervical dentin. The shear bond properties of dentin-resin specimens were measured with Universal testing machine (Zwick, 020, Germany) with the cross head speed of 0.5mm/min. From this experiment. the following results were obtained : 1. In case of shear bond strength, there was no significant difference among dentin bonding systems in not-pretreated groups, whereas in pretreated groups, the shear bond strengths of AB and of SB were statistically significantly higher than those of CL and of OP. 2. The shear bond strengths of AB and of SB in pretreated groups were significantly higher than those in not-pretreated groups. 3. The shear bond strengths of radicular layer of OP were higher than those of occlusal layer of OP in not-pretreated groups, and of AB in pretreated groups. The shear bond strengths of radicular layer of AB and of CL in not-pretreated groups were higher than those in pretreated group.

  • PDF

섬유보강 콘크리트(ECC)와 GFRP 보강근의 부착 특성 (Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite))

  • 최윤철;박금성;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제23권6호
    • /
    • pp.809-815
    • /
    • 2011
  • 철근과 GFRP bar의 콘크리트 및 PVA가 사용된 ECC에서의 부착-미끌림 관계를 실험을 통해 평가하였다. 총 8개의 최대하중 발현 이후 파괴 모드가 크게 변경되고 부착강도의 증진을 예상할 수 있는 PVA 및 PE가 2% 부피비로 혼입된 ECC로 제작된 RILEM 기준에 따른 실험체가 제작되었다. 이 연구의 목적은 ECC 및 GFRP가 사용되었을 경우 하중-변위 관계 및 부착응력-미끌림 관계를 다음과 같은 변수에 따라 파악하는 것이다. 1) 콘크리트의 종류(보통 콘크리트, 섬유보강 콘크리트), 2) 보강근의 직경(10 mm, 13 mm) 실험 결과 콘크리트와 ECC는 철근에 대한 실험체는 유사한 거동을 하였지만 GFRP에 대해서는 서로 다른 거동을 보였다. 기존 연구로 제안된 평가 방법은 실험 결과와 유사한 값을 나타내었지만 부착강도를 과대평가하는 경향을 보였으며 설계기준으로도 사용되는 ACI 위원회 제안식은 보수적인 결과를 타나내었다.

Temperature Effect on the Configurational Properties of an n-Decane Chain in Solution

  • Oh, In-Joon;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.162-167
    • /
    • 1984
  • Equilibrium and dynamical behaviors of an n-alkane poymer (decane) in solution have been investigated by a molecuar dynamics simulation method. The polymer is assumed to be a chain of elements $(CH_2)$ interconnected by bonds having a fixed bond length and bond angle, but esch bond of the polymer is allowed to execute hindered internal rotation. The calculation explicitly considers the molecular naturer of solvent by including the intermolecular interactions between slovent-solvent molecules and chain element-solvent molecule. We present the results of calculations on (1) equilibrium properties (the solvent molecule-chain element pair correlation function, chain element-chain element pair correlation function, the mean square end-to-end distance and the mean square radius of gyration of the polymer) and (2) dynamic properties (four different autocorrelation functions, namely, the autocorrelation functions for the end-to-end distance and the radius of gyration, and the velocity autocorrelation functions for the center of mass and the end point of the chain). We found that the physical properties of the polymer chain depends sensitively on temperature. Comparison of the present work with other authors' results is also presented.

그래핀 나노플레이트릿의 산화가 에폭시 도막재료의 역학적 및 부착 특성에 미치는 영향 (Oxidation Effect of Graphene Nanoplatelets on the Mechanical Properties and Bonding Performance of Epoxy Paint Material)

  • 손민재;김규용;이상규;사수이;유하민;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2020
  • In this study, oxidized graphene nanoplatelet(GO) was prepared by oxidizing graphene nanoplatelet(GNP) with nitric acid in order to solve the problem of dispersion of GNP, one of nano materials. GNP/Epoxy and GO/Epoxy were prepared by mixing GNP, GO with 0.1, 0.3, 0.5 and 1.0 wt.% in epoxy and the mechanical properties, bond performance were evaluated. As a result, GNP/Epoxy and GO/Epoxy showed higher tensile strength than Neat Epoxy at the 0.1, 0.3 wt.%. Especially, when 0.1 wt.% of GO was incorporated into epoxy resin, it showed highest tensile strength. It was confirmed that acid treatment of GNP was effective in improving the mechanical properties of epoxy paint. However, graphene material was found that it was not effective in improving the bond strength of the epoxy paint.

  • PDF

접착이음의 강도평가에 대한 해석 (Analysis for Strength Estimation of Adhesive Joints)

  • 박성완;이장규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF