• Title/Summary/Keyword: Bond Model

Search Result 751, Processing Time 0.023 seconds

Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete (콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In this paper, a stress transfer mechanism between near surface-mounted (NSM) fiber reinforced polymer (FRP) plate and concrete was investigated and a reliable analytical procedure for it was presented by using bilinear bond-slip model simulating the bond behavior of NSM FRP plate. As a result, critical values in the bi-linear model such as maximum shear strength, slip at that time and failure slip at the initiation of softening de-bonding were suggested for being used in the differential equation considering he interfacial characteristic between NSM FRP and concrete. Also, it was found that the bond-slip behavior could be suitably redicted by using the proposed procedure even in the case of various bond lengths from the comparison with bond test result.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Collisionally-Activated Dissociation of Peptides with a Disulfide Bond: Confirmation of the Mobile-Proton Model Based Explanation

  • Lee, Youn-Jin;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.5-8
    • /
    • 2010
  • In the present study, collisionally-activated dissociation (CAD) experiments were performed under low energy collision conditions in six peptides containing a disulfide bond. Fragments produced as a result of the cleavage of a disulfide bond were obtained after CAD in four peptides (bactenecin, TGF-$\alpha$, cortistantin, and linearly linked peptide, Scheme 1) with basic amino acid residues. In contrast, the CAD analysis of two peptides with no basic residue (oxytocin and tocinoic acid) rarely produced fragments indicative of cleavage of a disulfide bond. These results are consistent with the mobile proton model suggested by the McLuckey and O'air groups (ref. 22 and 23); nonmobile protons sequestered at basic amino acid residues appear to promote the cleavage of disulfide bonds.

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete

  • Shang, Feng;An, Xuhui;Kawai, Seji;Mishima, Tetsuya
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.403-419
    • /
    • 2010
  • The bond mechanism for reinforcing bars in concrete is equivalent to the normal contact and friction between the inclined ribs and the surrounding concrete. Based on the contact density model for the computation of shear transfer across cracks, an open-slip coupled model was developed for simulating three-dimensional bond behavior for reinforcing bars in concrete. A parameter study was performed and verified by simulating pull-out experiments of extremely different boundary conditions: short bar embedment with a huge concrete cover, extremely long bar embedment with a huge concrete cover, embedded aluminum bar and short bar embedded length with an insufficient concrete cover. The bar strain effect and splitting of the concrete cover on a local bond can be explained by finite element (FE) analysis. The analysis shows that the strain effect results from a large local slip and the splitting effect of a large opening of the interface. Finally, the sensitivity of rebar geometry was also checked by FE analysis and implies that the open-slip coupled model can be extended to the case of plain bar.

Strut-Tie Model Evaluation of Bond-Slip Effects in PSC Deep Beams (스트럿-타이 모델을 이용한 PSC 깊은보의 부착활동영향의 평가)

  • 윤영묵;강병수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.449-454
    • /
    • 2001
  • The algorithm and program which implement the bond-slip behavior of pre-tensioned concrete beams to the nonlinear strut-tie model approach, are developed in this study. The validity of the algorithm and program is verified through the strut-tie model evaluation of the strength and behavior of two pre-tensioned concrete deep beams which were failed by bond-slip.

  • PDF

Comparison of Analytical Bond Models between Reinforcement and Concrete (보강근과 콘크리트 사이의 해석적 부착모델 비교)

  • You Young Jun;Park Ji Sun;Park Young Hwan;Kim Hyeong Yeol;You Young Chan;Kim Keung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.33-36
    • /
    • 2005
  • This paper presents the comparison of the goodness-of-fit test of analytical bond models between concrete and steel or GFRP reinforcements. Bond test specimens were made by the CSA code and the rebars used in the test were steel and two kinds of GFRP rebar commercially utilized. The comparison of goodness-of-fit test for existing bond models and new proposed bond model was carried out by the least squares method. The result indicates that the new proposed bond model has better goodness-of-fit test than the existing ones.

  • PDF

Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams (축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성)

  • 이한선;고동우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.98-107
    • /
    • 2004
  • The objectives of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of some adhesive joints. The criteria of feel occurrence at the bond terminus was suggested. Peel loads of some adhesive joint(butt joint, T -shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with intensity of stress singularity ' $K_{prin.}$' when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity ' $K_{prin.}$&apso; can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress doesn't show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.'t show singularity at the bond terminus. Average principal stress can use as the criteria of peel occurrence at the bond terminus.

  • PDF