• Title/Summary/Keyword: Bond Model

Search Result 756, Processing Time 0.023 seconds

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

DEFAULTABLE BOND PRICING USING REGIME SWITCHING INTENSITY MODEL

  • Goutte, Stephane;Ngoupeyou, Armand
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.711-732
    • /
    • 2013
  • In this paper, we are interested in finding explicit numerical formulas to evaluate defaultable bonds prices of firms. For this purpose, we use a default intensity whose values depend on the credit rating of these firms. Each credit rating corresponds to a state of the default intensity. Then, this regime switches as soon as one of the credit rating of a firm also changes. Moreover, this regime switching default intensity model allows us to capture well some market features or economics behaviors. Thus, we obtain two explicit different formulas to evaluate the conditional Laplace transform of a regime switching Cox Ingersoll Ross model. One using the property of semi-affine of the model and the other one using analytic approximation. We conclude by giving some numerical illustrations of these formulas and real data estimation results.

Nonlinear Finite Element Analysis of Reinforced Concrete Structures Considering the Crack and Bond-Slip Effects (균열 및 부착슬립효과를 고려한 철근콘크리트 구조물의 비선형 유한요소해석)

  • 곽효경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.65-70
    • /
    • 1992
  • This study deals with the finite element analysis of the monotonic behavior of reinforced concrete beams and beam-column joint subassemblages. It is assumed that the behavior of these members can be discribed by a plane stress field. Concrete and reinforcing steel are represented by separate material models which are combined together with a model of the interaction between reinforcing bar and concrete through bond-slip to discribe the behavior of the composite reinforced concrete material. To discribe the concrete behavior, a nonlinear orthotropic model is adopted and the crack is discribed by a system of orthogonal cracks, which are rotating as the principal strain directions are changed. A smeared finite element model based on the fracture mechanics principles are used to overcome the numerical defect according to the finite element mesh size. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to estabilish the validity of the proposed model and identify the significance of various effects on the local and global response of reinforced concrete members.

  • PDF

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Simulation of Electric Vehicles Combining Structural and Functional Approaches

  • Silva, L.I.;Magallan, G.A.;De La Barrera, P.M.;De Angelo, C.H.;Garcia, G.O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.848-858
    • /
    • 2014
  • In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

The Price-discovery of Korean Bond Markets by US Treasury Bond Markets by US Treasury Bond Markets - The Start-up of Korean Bond Valuation System - (한국 채권현물시장에 대한 미국 채권현물시장의 가격발견기능 연구 - 채권시가평가제도 도입 전후를 중심으로 -)

  • Hong, Chung-Hyo;Moon, Gyu-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.125-151
    • /
    • 2004
  • This study tests the price discovery from US Treasury bond markets to Korean bond markets using the daily returns of Korean bond data (CD, 3-year T-note, 5-year T-note, 5-year corporate note) and US treasury bond markets (3-month T-bill, 5-year T-note 10-year T-bond) from July 1, 1998 to December 31, 2003. For further research, we divide full data into two sub-samples on the basis of the start-up of bond valuation system in Korean bond market July 1, 2000, employing uni-variate AR(1)-GARCH(1,1)-M model. The main results are as follows. First the volatility spillover effects from US Treasury bond markets (3-month T-bill, 5-year T-note, 10-year T-bond) to Korean Treasury and Corporate bond markets (CD, 3-year T-note, 5-year T-note, 5-year corporate note) are significantly found at 1% confidence level. Second, the price discovery function from US bond markets to Korean bond markets in the sub-data of the pre-bond valuation system exists much stronger and more persistent than those of the post-bond valuation system. In particular, the role of 10-year T-bond compared with 3-month T-bill and 5-year T-note is outstanding. We imply these findings result from the international capital market integration which is accelerated by the broad opening of Korean capital market after 1997 Korean currency crisis and the development of telecommunication skill. In addition, these results are meaningful for bond investors who are in charge of capital asset pricing valuation, risk management, and international portfolio management.

  • PDF

Molecular Dynamics Simulation of Liquid Alkanes. Ⅰ. Thermodynamics and Structures of Normal Alkanes : n-butane to n-heptadecane

  • 이송희;이홍;박형석;Jayendran C. Rasaiah
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.735-744
    • /
    • 1996
  • We present results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models Ⅰ-Ⅲ. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. Model Ⅰ is the original Ryckaert and Bellemans' collapsed atomic model [Discuss. Faraday Soc. 1978, 66, 95] and model Ⅱ is the expanded collapsed model which includes C-C bond stretching and C-C-C bond angle bending potentials in addition to Lennard-Jones and torsional potentials of model Ⅰ. In model Ⅲ all the carbon and hydrogen atoms in the monomeric units are represented explicitly for the alkane molecules. Excellent agreement of the results of our MD simulations of model Ⅰ for n-butane with those of Edberg et al.[J. Chem. Phys. 1986, 84, 6933], who used a different algorithm confirms the validity of our algorithms for MD simulations of model Ⅱ for 14 liquid n-alkanes and of models Ⅰ and Ⅲ for liquid n-butane, n-decane, and n-heptadecane. The thermodynamic and structural properties of models Ⅰ and Ⅱ are very similar to each other and the thermodynamic properties of model Ⅲ for the three n-alkanes are not much different from those of models Ⅰ and Ⅱ. However, the structural properties of model Ⅲ are very different from those of models Ⅰ and Ⅱ as observed by comparing the radial distribution functions, the average end-to-end distances and the root-mean-squared radii of gyrations.

Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides

  • Nan, Yong-Hai;Shin, Song-Yub
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.747-752
    • /
    • 2011
  • To investigate the effects of disulphide bond position on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of ${\alpha}$-helical homo-dimeric antimicrobial peptides (AMPs), we synthesized an ${\alpha}$-helical model peptide ($K_6L_4W_1$) and its homo-dimeric peptides (di-$K_6L_4W_1$-N, di-$K_6L_4W_1$-M, and di-$K_6L_4W_1$-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike $K_6L_4W_1$ and di-$K_6L_4W_1$-M, the antimicrobial activity of di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C was unaffected by 150 mM NaCl. Both di-$K_6L_4W_1$-N and di-$K_6L_4W_1$-C caused much greater inhibitory effects on nitric oxide (NO) release in LPS-induced mouse macrophage RAW 264.7 cells, compared to di-$K_6L_4W_1$-M. Taken together, our results indicate that the presence of a disulphide bond at the N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant ${\alpha}$-helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

Information Flow Effect Between the Stock Market and Bond Market (주식시장과 채권시장간의 정보 이전효과)

  • Choi, Cha-Soon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • This paper investigated the information spillover effect between stock market and bond market with the KOSPI daily index and MMF yield data. The overall analysis period is from May 2, 1997 to August 30, 2019. The empirical analysis was conducted by dividing the period from May 2, 1997 to December 30, 2008 before the global financial crisis, and from December 30, 2008 to August 30, 2019 after the global financial crisis, and the overall analysis period. The analysis shows that the EGARCH model considering asymmetric variability is suitable. The price spillover effect and volatility spillover effect existed in both directions between the stock market and the bond market, and the price transfer effect was greater in the period before the global financial crisis than in the period after the global financial crisis. Asymmetric volatility in information between stock and bond markets appears to exist in both markets.