• Title/Summary/Keyword: Bomb Trajectory

Search Result 7, Processing Time 0.018 seconds

Tests of a Guidance Kit for Air-to-Surface Bomb (공대지 폭탄용 유도키트 시험)

  • Lee, Inwon;Lee, Kidu;Park, Youngkuen;Lim, Sangsoo;Baek, Seungwoock;Lee, Daeyearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.314-318
    • /
    • 2013
  • Tests and evaluations following the U.S. MIL-HDBK/STANDARD were successfully conducted to assure the performance of the air-to-surface guidance kit which was developed first in Korea. Various ground tests confirmed the operation capability and reliability of the guidance kit, and flight tests proved very good mid-range gliding performance and accuracy of the gliding bomb which was a general purpose bomb with the guidance kit.

Development of a Precision BLDC Servo Position Controller for Composite Smoke Bomb Azimuth Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Choi, Sung-Jin;Choi, Jung-Keyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-472
    • /
    • 2006
  • This study has been done to design a precise system and develop position control algorithm to control a Composite Smoke Bomb Azimuth driving apparatus of a BLDC servo motor. Having to Blind the sight of opposite tank. the Smoke Bomb Rotational driving system needs instant response that is able to detect opponent appearance and blast the bomb at a short time. So a design that shows fast current response capability or $300[Hz]\sim500[Hz]$ is proposed. in the MIN-MAX PWM technology is used to increase the operational speed. in order to control the blasting position, a precision position control algorithm that utilizes the integral value of speed trajectory is suggested. Also these characteristics are monitored and assessed by the PC based monitoring program which shows the graphs of current, voltage, position, and speed parameters. The main controller is based on a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and the PWM generator utilizes EPM7128 CPLD.

Analysis and Flight Test of XKO-1 Store Separation (저속통제기 외부장착물 분리해석 및 비행시험)

  • Lee, Seung-Soo;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.24-29
    • /
    • 2004
  • In this paper, we summarize the results of free drop wind tunnel test, separation analysis and flight test in order to verify the safety during the separations of an external fuel tank and the LAU-131 rocket launcher from XKO-l. The wind tunnel test was conducted to show the safety in free drop of the stores and to gather the trajectory data for fine tune of MSAP(Multi-body Separation Analysis Program). The enhanced MSAP was then used to predict the trajectories of the stores with and without the ejector forces. A correlation of MSAP results for free drop case was also made to show the safety of jettison with the free drop type bomb rack. Moreover, the flight test was conducted. and its results were compared to analysis results. Finally, the safe jettison boundary was determined from the flight test.

A Study on the Behavior of Spheroid Configuration Bobbin (회전타원체 보빈 형상의 거동에 관한 연구)

  • Kang, Seung-Hee;Ahn, Sung-Ho;Rim, One-Kwon;Kim, Hye-Ung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

A Study on the Accuracy Analysis for Air-to-Ground Weapon Delivery (공대지 무장투하정확도 해석에 대한 연구)

  • Jo, Han-Sang;Song, Chae-Il;Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this paper, we propose an accuracy analysis method for air-to-ground weapon delivery. The lethality, which is one of the most important factor to evaluate combat effectiveness of a fighter, depends on the capability to improve the accuracy of the conventional weapon delivery. We present error elements which affect the error analysis for air-to-ground weapon delivery from the initial design phase to the final validation phase. And we introduce an accuracy analysis method to reflect the error elements and to evaluate them quantitatively. We assume zero bias-error and consider random error for the weapon delivery accuracy analysis.

Development of the External Instrumentation System of a Fighter Aircraft for Flight Test (비행시험을 위한 전투기 외장형 계측시스템 개발)

  • Yeom, Hyeong-Seop;Oh, Jong-Hoon;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.907-913
    • /
    • 2010
  • In this paper, we have described a development of the external instrumentation system of a fighter aircraft for flight test. The external instrumentation system consists of the instrumentation pod and the image pod. The instrumentation pod measures a flight data(attitude, velocity, altitude, etc) of the fighter aircraft by using GPS/AHRS sensor. The image pod takes high-speed images for the separation trajectory of a smart bomb with 2 high-speed cameras and video signal for it with one general camera. We have verified the performance of the external instrumentation system through the ground test, the environment test and the flight test.

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition (그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석)

  • Yoo, Jae-Hun;Kim, Chang Kee;Choi, Yoon Jeong;Lim, Ye Seul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.