• Title/Summary/Keyword: Bolted Connection

Search Result 175, Processing Time 0.022 seconds

Cyclic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대 실험)

  • 이철호;전상우;김진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.306-316
    • /
    • 2002
  • This paper summarizes the results of full-scale cyclic seismic testing on four RBS (reduced beam section) steel moment connections. Key test variables were web bolting vs. welding and strong vs. medium PZ (panel zone) strength. The specimen with medium PZ strength was specially designed to mobilize energy dissipation from both the PZ and RBS region in a balanced way; the aim was to reduce the requirement of expensive doubler plates. Both strong and medium PZ specimens with web-welding were able to provide sufficient connection rotation capacity required of special moment frames, whereas specimens with web-bolting showed inferior performance due to the premature brittle fracture of the beam flange across the weld access hole. In contrast to the case of web-welded specimens, the web-bolted specimens could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. If a quality welding for the beam-to-column joint is made as in this study, the fracture-prone area tends to move into the beam flange base metal within the weld access hole. Analytical study was also conducted to understand the observed base metal fracture from the engineering mechanics point of view.

  • PDF

Experiment of Friction-type Reinforcing Members for Upgrading Wind-Resistant Performance of Transmission Towers (송전철탑의 내풍성능 향상을 위한 마찰형 보강기구 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.884-892
    • /
    • 2006
  • A friction-type reinforcing member(FRM) is proposed for the purpose of upgrading wind resistant performance of a transmission tower and verified through cyclic loading tests. First, suitable install scheme of the FRM is investigated through numerical analysis. Main-post-reinforcing type and X-brace type installation schemes are examined, and numerical analysis shows that the former is more effective due to the vertical cantilever type behavior of the transmission tower. Based on this result, two types of the FRM's, dissipating energy in slotted belted connections, are proposed. The one utilizes the relative displacement between the FRM and the main post, and the other utilizes that between the separated angles consisting of the FRM as a slip deformation of the slotted bolted connection. Proposed FRM's are installed on each main post of the 1/2 scale substructure models of an actual transmission tower body. From cyclic loading tests, the latter type of the proposed FRM's dissipates energy more effectively and its slip load is controlled by applied torque well, and shares considerable amount of the axial force in the main post.

  • PDF

The Weld Strength and Design Tables for the Unstiffened Seated Connections (비보강받침접합의 용접강도와 설계도표)

  • Choi, Sun-Kyu;Yoo, Jung-Han;Lee, Kang-Min;Park, Jai-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.199-206
    • /
    • 2012
  • Unstiffened seated connections (USC) ensure easy installation and safety during erection, thereby making the process more economical. USCs consist of a seat angle for carrying the beam's reactions and a top angle to provide beam stability. These angles are bolted or welded to the beam and supporting member. This paper sought to propose a design table for the weld strength of such connections obtained from the elastic vector method (EVM) and the instantaneous center-of-rotation method (ICM) in terms of calculating the eccentricity. Also, the proposed design table is compared with both AISC and KBC specifications.

A development of the 345kV spacer damper with automatic clamping device for transmission line (345kV 송전선로용 자동클램핑 장치형 스페이서 댐퍼 개발)

  • An, Y.H.;Lee, D.I.;Kim, T.J.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.278-282
    • /
    • 2001
  • The purpose of this study is to introduce a new spacer damper for the bundle transmission lines network. It has the special design, the main characteristics and advantage of this new kind of spacer damper. An Existing spacer damper with bolted clamps, although widely used, is a method of connection with certain disadvantage both as regards assembly on the conductor and in the course of time. Even if tightening torque is correctly applied by using bolt with share head or torque wrench during working time, the aeolian vibration could involve untightening during life time, so the cable can move into the Jaws and wire's breakage appear. To salve this problems, France, Japan and other countries had developed a spacer damper with an automatic system through many years. This new spacer damper is an original automatic clamping device (beltless) which does not require special tool for its installation. This device prevents clamp unlocking problems, ensures a simple installation and ensures a reliable-tightening during life time. Therefore, it is necessary to localize this boltless spacer damper with automate clamping device.

  • PDF

Cyclic tests on bolted steel and composite double-sided beam-to-column joints

  • Dubina, Dan;Ciutina, Adrian Liviu;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • This paper summarises results of the research performed at the Department of Steel Structures and Structural Mechanics from the "Politehnica" University of Timisoara, Romania, in order to evaluate the performance of beam-to-column extended end plate connections for steel and composite joints. It comprises laboratory tests on steel and composite joints, and numerical modelling of joints, based on tests. Tested joints are double-sided, with structural elements realised of welded steel sections. The columns are of cruciform cross-section, while the beams are of I section. Both monotonic and cyclic loading, symmetrically and antisymmetrically, has been applied. On the basis of tested joints, a refined computer model has been calibrated using a special connection element of the computer code DRAIN 2DX. In this way, a static/dynamic structural analysis of framed structures with real characteristics of the beam to column joints is possible.

An Experimental Study on the Structural Characteristics of Tension Joints with High-Strength Bolted Split-Tee Connection (고력볼트 스플릿-티 인장접합부의 구조성능에 관한 실험적 연구)

  • Choi, Sung Mo;Lee, Seong Hui;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.737-745
    • /
    • 2004
  • In general, most of the beam-to-column connections for steel structures are regarded as either rigid connections or pin connections. Recently, the concept of a semi-rigid connection was introduced for a correct analysis of steel structures. Several experimental and theoretical researches have been performed regarding the structural behaviors of frames and buildings with semi-rigid connections. The results are not well known, and structural frame/building has not been designed to introduce the concept of semi-rigid connections between a beam and column until this time. To resolve this, this research depends on design specifications prepared by other advanced countries for the design of buildings with semi-rigid connections. Such a specification, however, should incorporate domestic characteristics of steel material properties and load conditions. This paper deals with structural capacities and deformable behaviors for a split-T tensile connection with F10T high-strength bolts to investigate the structural characteristics of semi-rigid frames. The experimental parameters include the thickness of T-flanges, painted or not, preloaded or not, and load pushover pattern. A total of 20 specimens were fabricated and tested with a 300-ton UTM. The structural capacities and behavior for split-T tensile connections were evaluated on each research parameter.

Strength and Stress Distribution Behavior for the Connections of Corrugated Steel Plates (파형강판 이음부의 강도 및 응력분포특성에 관한 연구)

  • Hwang, Won Sup;Kang, Seung Pyo;Wi, Young Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.365-375
    • /
    • 2004
  • This paper presents the numerical results in strength and stress distribution behavior for the connections of corrugated steel plates (CSP). The results obtained using the finite element method indicate that the CSP with =30mm of longitudinal edge lap, by the current standard specification, has very conservative values. The results also indicate the difference of strength behavior from the bolt arrangement. The strength behavior of standard corrugated type with staggered holes is only affected by circumferential edge lap, but the edge lap and bolthole spacing have an effect on the strength behavior for the deeply corrugated type with parallel holes. Based on these results, this paper examines the current specification of the connections for CSP.

Analysis and design of demountable circular CFST column-base connections

  • Li, Dongxu;Wang, Jia;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.559-571
    • /
    • 2018
  • In current engineering practice, circular concrete-filled steel tubular (CFST) columns have been used as effective structural components due to their significant structural and economic benefits. To apply these structural components into steel-concrete composite moment resisting frames, increasing number of research into the column-base connections of circular CFST columns have been found. However, most of the previous research focused on the strength, rigidity and seismic resisting performance of the circular CFST column-base connections. The present paper attempts to investigate the demountability of bolted circular CFST column-base connections using the finite element method. The developed finite element models take into account the effects of material and geometric nonlinearities; the accuracy of proposed models is validated through comparison against independent experimental results. The mechanical performance of CFST column-base connections with both permanent and demountable design details are compared with the developed finite element models. Parametric studies are further carried out to examine the effects of design parameters on the behaviour of demountable circular CFST column-base connections. Moreover, the initial stiffness and moment capacity of such demountable connections are compared with the existing codes of practice. The comparison results indicate that an improved prediction method of the initial stiffness for these connections should be developed.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.