• Title/Summary/Keyword: Bolt strength analysis

Search Result 139, Processing Time 0.031 seconds

The Pull-out Behavior of Rock Bolts According to Grout Strength during Rock Bolt Pull-out (록볼트 인발 시 그라우트 강도에 따른 인발 거동)

  • Seongmin Jang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, through experimental research, the period when rock bolts exert support effects is presented as grout strength and through numerical analysis, the rock bolt pull-out behavior according to ground conditions and strength reduction factors is analyzed. As a result, it is determined that rock bolts exhibit their reinforcing effect at a grout strength of 5 MPa (cured for 18 hours). The influence of the boundary interface strength reduction factor was found to be significant for rock bolt displacement in weak ground conditions, for shear stress between grout and ground in highly elastic ground conditions, and for grout stress in all ground conditions. These findings are expected to contribute to the establishment of specific standards for rock bolt testing and numerical analysis, and to facilitate improved design and implementation of rock bolt reinforcement.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

New reinforcement algorithms in discontinuous deformation analysis for rock failure

  • Chen, Yunjuan;Zhu, Weishen;Li, Shucai;Zhang, Xin
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.787-803
    • /
    • 2016
  • DDARF (Discontinuous Deformation Analysis for Rock Failure) is a numerical algorithm for simulating jointed rock masses' discontinuous deformation. While its reinforcement simulation is only limited to end-anchorage bolt, which is assumed to be a linear spring simply. Here, several new reinforcement modes in DDARF are proposed, including lining reinforcement, full-length anchorage bolt and equivalent reinforcement. In the numerical simulation, lining part is assigned higher mechanical strength than surrounding rock masses, it may include multiple virtual joints or not, depending on projects. There must be no embedding or stretching between lining blocks and surrounding blocks. To realize simulation of the full-length anchorage bolt, at every discontinuity passed through the bolt, a set of normal and tangential spring needs to be added along the bolt's axial and tangential direction. Thus, bolt's axial force, shearing force and full-length anchorage effect are all realized synchronously. And, failure criterions of anchorage effect are established for different failure modes. In the meantime, from the perspective of improving surrounding rock masses' overall strength, a new equivalent and tentative simulation method is proposed, it can save calculation storage and improve efficiency. Along the text, simulation algorithms and applications of these new reinforcement modes in DDARF are given.

Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut (볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도)

  • Park, Yong Myung;Lee, Kun Joon;Kim, Dong Hyun;Ju, Ho Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.617-626
    • /
    • 2014
  • In this paper, experiments for the evaluation of tensile strength of steel plate with bolt hole and bearing strength of bolted connection were performed, where bolt holes were punched by drilling and oxygen torch, respectively. For the tensile tests, drilled and oxygen torch punched steel plate specimens of 10mm and 15mm thickness were made from structural angles and H-shapes, respectively. For the bearing strength evaluation, test specimens were fabricated with base plates and splice plates those were also punched by drilling and oxygen torch, respectively. The Vicker's hardness were measured around the bolt hole to investigate material property change due to heat effect by oxygen torch cut. Numerical analysis was also performed to investigate the bearing strength of bolted joints due to the increase of hardness around the bolt hole by oxygen torch cut.

An Evaluation of Clamping Characteristics for High Strength Bolts with Variable Bolt Lengths (고력볼트 길이에 따른 체결 특성 평가)

  • Lee, Kang Min;Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Oh, Kyung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.127-134
    • /
    • 2011
  • It has been reported that the length parameter of high strength bolts results in the variance in tensile loads. The required turn of nut for each length is specified in AISC RCSC specification. There is no specific regulation datum about the bolt length in the two national codes and specifications in Korea. Therefore this study focused on evaluating influence of the clamping torque subjected to length parameter of high strength bolts. Two types of high strength bolt specimens were manufactured and tested; High Strength Hexagon bolt specified in ASTM A490 and Torque Shear Bolt in KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut, and the clamping force were analyzed to review whether length parameter affects on the required tensile strength. To evaluate the effects of the length parameter on the torque and turn of nut for the required strength and clamping force, statistical analysis was also carried out.

Reliabilities of distances describing bolt placement for high strength steel connections

  • Oztekin, Ertekin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In the bolted connections, bolt placements are generally described and are generally made in the direction of design effects and in the perpendicular direction to design effects. In these both directions, the reliability of the distance of bolts to the edges of connection plate and the distance of bolts to each other is investigated for high strength steel connections built up with high strength bolts in this study. For this purpose, simple SL (bearing type shear connection) and SLP (bearing type shear connection for body-fit bolts) type steel connections with St 52 grade steel plates with 8 different thicknesses and with 8.8D grade high strength bolts (HV) were constituted and analyzed under H (Dead Loads+Live Loads+Snow Loads+Roof Loads) and HZ (H Loads+Wind Loads+Earthquake Loads) loadings. Geometric properties, material properties and design actions were taken as random variables. Monte Carlo Simulation method was used to compute failure risk and the first order second moment method was used to determine the reliability indexes of those different distances describing the placement of bolts. Results obtained from computations have been presented in graphics and in a Table. Then, they were compared with some values proposed by some structural codes. Finally, new equations were constituted for minimum and maximum values of distances describing bolt placement by regression analyses performed on those results.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Experimental Study on Tensile Fatigue Strength of the High Strength Bolts (고장력볼트의 인장피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.165-170
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. The high strength bolts are often subjected to a repeated tension-type of loading in which the fatigue failure is a major mode of failure. However, the theoretical and experimental study for the fatigue failure of tension bolt has not been well established in Korea. In this study, we performed a tensile fatigue test of F8T, F10T and F13T, F13T-N high strength bolts under tension. We proposed three fatigue strength specifications by performing 95% survival probability analysis for F8T, F10T, F13T, and F13T-N bolt under the $2{\times}10^6$ cycles of repeated loading. And the fatigue strength for the advanced screw thread shape bolt developed in this study are compared with the previous KS screw thread shape bolt.

Finite element analysis for forging of nonaxisymmetric cam bolt (비축대칭 캠 볼트 단조의 유한요소 해석)

  • Cho, Hae-Yong;Kim, Wan-Jong;Lee, Seok-Jin;Park, Nam-Ki;Lee, Seung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1570-1575
    • /
    • 2007
  • The cold-forging process analysed in this paper deals with the cam bolt of a nonaxisymmetric shape which mainly is used as a part in the steering system of a vehicle for the purpose of adjusting shock absorb. So both strength and endurance are very important for the cam bolt. In this study, cam bolt forging process is composed of four stage processes. For three forging stages, shape of workpiece will be eccentrical. And then bolt head and washer of eccentrical shape is created in last stage. 3D finite element analysis repeatedly has been performed with changing dimension of die to obtain adequate former multi forging process and die shape. Simulation results reviewed have influence on deciding design of die and forging process. As a result, Simulation results have provided a direction to improve the process.

  • PDF

Force-Deformation Relationship of Bearing-Type Bolted Connections Governed by Bolt Shear Rupture (볼트 전단파단이 지배하는 지압형식 볼트접합부의 힘-변형 관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Well-designed bolted connections can exhibit excellent ductile behavior through bearing mechanism until the occurrence of bolt shear rupture. The ultimate strength analysis of eccentric bolted connections is an economical and mechanistic approach which uses such ductility. However, the bolt load-deformation relationship, which forms basis of the current practice, is based on very limited combinations of bolt and steel materials. The primary objective of this study was to establish the general bolt force-deformation relationship based on systematic single-bolt bearing connection tests. The test results showed that the projected area of the bolt hole and the strength and thickness of the plate to be connected are the main factors affecting the force-deformation relationship. The results of this study can be used for the instantaneous center of rotation method (ICRM) to achieve more accurate analysis and economical design of a variety of group-bolted connections subjected to eccentric shear.