• Title/Summary/Keyword: Bolt assembling

Search Result 10, Processing Time 0.021 seconds

Applicability estimation for cable assembling method of shield tunnel using field test construction (현장 조립 시험시공을 통한 쉴드터널 강연선 체결 기술의 적용성 평가)

  • Kim, Dong-Min;Ma, Sang-Joon;Lee, Young-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study, the new segment assembling method using cable tensible force was developed to improve the problem of bolt assembling method of shield tunnel. In the field test construction, cable assembling method reduced the assembling time of segment in comparison with bolt assembling method because of guide role of segment shear-key. In the result of measuring the necessary time for segment assembling process, it took 420sec to assemble one segment in bolt method and 400sec to assemble one segment in cable method, but in case of using the cable automatic feeder, it could reduce the necessary time as 60sec in comparison with bolt assembling method. The cable automatic system modeling using BIM, that connected shield TBM also will be utilized in the area of design TBM, excavation plan, method process understanding, construction management and so on.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

A Study on Shield Tunnel Assembling System Using a Cable and Island-Type Shear Key (강연선과 아일랜드타입 전단키를 이용한 쉴드터널 체결기술 연구)

  • Ma, Sang-Joon;Lee, Young-Sub;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • In this study, a new segment assembling method using cable tensible force and island-type shear key was developed to improve the problems of bolt assembling method of shield tunnel. The bolting system and island-type shear key system were compared to analyze the mechanical behavior that occurs in the segment. The study results obtained from structural investigation and numerical analysis technique showed that the shear strength of island-type shear key is higher than that of the bolt system. With the increase of the tensile strength, it is expected that the stability of the segment will be secured.

Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions (볼트 체결 조건에 따른 두 판재의 동적 특성 예측)

  • Hong Sang-joon;Lee DongJin;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

Modular Design for the Dry Pulverizing/Mixing Device (건식분말화/혼합장치의 모듈화 설계)

  • 김영환;진재현;윤지섭;정재후;홍동희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.64-67
    • /
    • 2003
  • The authors have settled general modular design by analyzing related literatures, but general modular design are too massive to be applicable to all process devices. So, the common parts have to be selected, applied, and modified for the devices. We have chosen the dry pulverizing/mixing device for example. We have elected the target modules of this device such as flange, hinge, bolt, nut coupling. The remote assembling and disassembling possibilities of the selected modules have been analyzed from the viewpoints of visibility, interference, approach, weight and so on. We have presented final modular design proper to the target modules. The modular designs which have adopted the modular property been analyzed. The modular design points are comprised of common and unique points. Some points are common for several devices, such as bolt, flange and so on. Others are unique for each device, such as power transmission coupling. The experimental devices have been modified by these modular design points and the design drawings have been presented.

  • PDF

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

Nonlinear Behavior Analysis of Connections Between Modular Units Using Connecting Steel Plate (연결 강판을 이용한 모듈러 유닛 간 접합부의 비선형 거동 해석)

  • Kim, Hyeon-Gu;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • Modular construction is an economical and efficient construction that reduces time and costs by manufacturing units in factories and constructing them on site. Currently, the demand for modular construction is increasing not only abroad but also domestically. As the demand for modular construction increases, a lot of development and research on connections between modular units are being conducted. Connections between modular units should be quick and simple to assemble when assembling units on site, and should be in a form that allows each unit to be connected regardless of direction. In addition, it must be able to exert sufficient strength against external loads. In this study, a connection between modular units using connecting steel plates and bolts was proposed, and the nonlinear behavior of the connection to external lateral force was analyzed through finite element analysis, and resistance performance was evaluated.

Erection Capability of Heavy Precast Frames with Metal Plates using Wet Concrete for Tolerance (톨러런스기반 플레이트 접합 장치를 사용한 고중량 RC보의 설치 성능)

  • Hong, Won-Kee;Nguyen, Van Tien;Nguyen, Manh Cuong;Nkundimana, Eric
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.12-13
    • /
    • 2021
  • Methods for the manufacture, erection, and assembly of heavy frame modules were proposed. Interferences among precast members were prevented by using bolted metal plates for dry precast beam-to-column joints during assembly with a clearance for tolerance implementing grouted concrete filler plates instead of metal filler plates. Clearances for tolerances were provided to avoid conflictions among components during erection phases. These gaps were, then, grouted by high-strength mortar. The constructability of new connections of a beam-to-column joint using bolted metal plates for precast structures was examined using a full-scale assembly test in which practical observations indicated that members could be aligned and placed accurately in both horizontal and vertical directions, leading to a fast and convenient assembling. Bolt holes of the endplate were properly aligned using couplers with 30 mm fastened length embedded in the columns. The assembly test demonstrated the erection safety and structural stability of the proposed joints that were without filler plates when they were subjected to heavy loads at the time of their erection. The facile and rapid assembly of precast beam-to-column connections with a 30 mm tolerance was observed. The proposed assembly method is rapid, sustainable, and resilient, replacing the conventional methods of concrete frame construction, offering a connection that can be used in constructing infrastructure, such as buildings and pipe-rack frames.

  • PDF

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.