• Title/Summary/Keyword: Bolt Clamping Force

Search Result 34, Processing Time 0.018 seconds

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.

Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis (유한요소해석을 이용한 M8 블라인드 리벳 너트 형상 최적 설계)

  • Gu, B.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Blind rivet nuts are increasingly used in automotive for the joining of sheets. Their application, however, requires appropriate design guides to prevent catastrophic events arising from the failure of joints. In this study, the shaft shape of a frequently used M8 blind rivet nut is optimized based on 3D numerical analysis of the blind rivet nut considering the characteristics of thread. The thread needs to be modeled to suitably consider the fastening of the M8 bolt after the crimping process. FE analysis showed that while the friction in the contact between crimp flange and plate has no significant effect on the crimp geometry, shaft thickness (t) and shaft height (h) are the most significant design variables. The parameter study including various combinations of t and h reveals that they affect the gap (the distance between the crimped flange and the plate that develops through riveting) and the load acting on the plate. The gap is an indicator of the tightening force. It is found that t is inversely proportional to the gap, and proportional to the load, whereas h is proportional to the gap and inversely proportional to the load. Based on our FE analysis results, we propose the range 0.062 < t/h < 0.1 to ensure sufficient fastening (high clamping load, small gap) of the M8 blind rivet nut. The design guide for determining the t/h ratio proposed in this study can be used for general quantitative analysis of the size and the t/h ratio of blind rivet nuts.

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.