• Title/Summary/Keyword: Bolomey's equation

Search Result 1, Processing Time 0.014 seconds

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.