• Title/Summary/Keyword: Boiling wall

Search Result 166, Processing Time 0.021 seconds

Effects of Tube Inclination Angle on Nucleate Pool Boiling Heat Transfer (튜브 경사각이 풀핵비등열전달에 미치는 영향)

  • Gang, Myeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • An experimental parametric study of a tubular heat exchanger has been carried out far the saturated water at atmospheric pressure to determine effects of tube inclination on pool boiling heat transfer. For the analysis, seven inclination angles(0°, 15°, 30°, 45°, 60°, 75°, and 90°) and two tube diameters(12.7 and 19.1 mm) were tested. According to the results, inclination angles result in very much change on pool boiling heat transfer. As the inclination angle is around horizontal or vertical, maximum or minimum heat transfer is expected, respectively. For the same wall superheat(about 5.5K) the ratio between two heat fluxes fur $\theta$ =15° and 75° has the value of more than five when the tube diameter is 12.7 mm and heat flux is increasing.

A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

  • PDF

An Improved Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling

  • Young Min Kwon;Soon Heung Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer's equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error.

  • PDF

Study on the characteristics of nucleate boiling heat transfer with changing of surface roughness (표면거칠기의 변화에 따른 핵비등열전달의 특성에 관한 연구)

  • 김춘식;정대인;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-78
    • /
    • 1983
  • In nucleate boiling, bubbles are created by the expansion of entrapped gas or vapor at small cavities in the surface of heat transfer. Namely, surface roughness is the important factor of heat transfer. This paper deals with the characteristics of boiling curve according to surface roughness. Freon-113 is used as the experimental fluid. The results are as follows; 1. In the case of the same as "q=C$\Delta$T$^{n}$ ", the lower numberical index "n", the larger heat transfer coefficient and the lower wall superheat "$\Delta$T" is obtained for the rougher surface. 2. In the working of every kind of heat transfer sruface with boiling, improvement of capabilities of heat transfer can be devised by adding suitable roughness on the heat transfer surface. 3. When the metal nets of moderate mesh number are established, the capabilities of heat transfer can be improved in evaporation of liquid in vessels. But in the case that the sucession of bubbles in checked by using the nets which are too tight, the generation of bubbles union decreases critical heat flux. decreases critical heat flux.

  • PDF

Pool Boiling Heat Transfer in Annuli with Closed Bottom

  • Kang, Myeong-Gie;Han, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.165-175
    • /
    • 2002
  • Effects of gap sizes (3.9-44.3 mm) of vertical annuli on nucleate pool boiling heat transfer of water at atmospheric pressure have been obtained experimentally. Through the study, tubes of the closed bottom have been investigated and results are compared with those of a single unconfined tube. According to the results, the annular condition gives much increase in heat transfer coefficient at moderate heat fluxes. The increase is much enhanced 3s the gap size decreases. At the same tube wall superheat (about 3.1 K) the heat transfer coefficient for the least gap size (i.e., 3.9 mm) is more than three times greater than that of the unconfined tube. However, deterioration of heat transfer occurs at high heat flux for confined boiling.

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

Local Heat Transfer Characteristics in Convective Partial Boiling by Impingement of Free-Surface/Submerged Circular Water Jets (미세 원형 충돌수제트의 부분 대류비등에 있어서 자유표면/잠입 제트의 국소 열전달 특성)

  • 조형희;우성제;신창환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.441-449
    • /
    • 2002
  • Single-phase convection and partial nucleate boiling in free-surface and submerged jet impingements of subcooled water ejected through a 2-mm-diameter circular pipe nozzle were investigated by local measurements. Effects of jet velocity and nozzle-to-imping-ing surface distance as well as heat flux on distributions of wall temperature and heat transfer coefficients were considered. Incipience of boiling began from far downstream in contrast with the cases of the planar water jets of high Reynolds numbers. Heat flux increase and velocity decrease reduced the temperature difference between stagnation and far downstream regions with the increasing influence of boiling in partial boiling regime. The chance in nozzle-to-impinging surface distance from H/d=1 to 12 had a significant effect on heat transfer around the stagnation point of the submerged jet, but not for the free-surface jet. The submerged jet provided the lower cooling performance than the free-surface jet due to the entrainment of the pool fluid of which temperature increased.

Effect of Surface Roughness on Two-Phase Flow Heat Transfer by Confined Liquid Impinging Jet (액체 충돌제트의 표면조도변화에 따른 이상유동 열전달 특성)

  • Yim, Seong-Hwan;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.714-721
    • /
    • 2005
  • The water jet impingement cooling with boiling is one of the techniques to remove heat from high heat flux equipments. The configuration of surface roughness is one obvious condition of affecting the performance on heat transfer in nucleate boiling, The present study investigates the water jet impinging single-phase convection and nucleate boiling heat transfer for the effect of surface roughness to enhance the heat transfer in free surface and submerged jet. The distributions of the averaged wall temperature as well as the boiling curves are discussed. Jet velocities are varied from 0.65 to 1.7 m/s. Surface roughness by sand blast and sand paper varies from 0.3 to 2.51 ${\mu}m$ and cavity shapes on surface are semi-circle and v-shape, respectively The results showed that higher velocity of the jet caused the boiling incipience to be delayed more. The incipient boiling and heat transfer increase with increasing surface roughness due to a large number of cavities of uniform size.

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.