• Title/Summary/Keyword: Boiler Modeling

Search Result 44, Processing Time 0.02 seconds

Shot -term Operation Scheduling Using Fuzzy Theory on Cogeneration Systems Connected with Auxiliary Equipments (각종 보조설비와 연계된 열병합발전시스템에서 퍼지이론을 적용한 단기운전계획수립)

  • Lee, Jong-Beom;Jung, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.553-555
    • /
    • 1995
  • This paper presents the optimal short-term operation scheduling by using on cogeneration systems connected with auxiliary equipments. Simulation is performed in case of the bottomming cycle which generates the demand heat preferentially. Heat storage tank, electricity charger, auxiliary boiler and independent generator are considered as auxiliary equipments connected to cogeneration systems. The results of simulation show the auxiliary equipments can be effeciently operated in case of the bottomming cycle by modeling proposed in this paper. The effectiveness of operation scheduling gained by application of fuzzy theory is evaluated by detailed comparison and investigation of the simulation results.

  • PDF

A Study on Velocity Profiles between Two Baffles in a Horizontal Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.136-142
    • /
    • 2015
  • The shell and tube heat exchanger is an essential part of a power plant for recovering transfer heat between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional PIV (Particle Image Velocimetry) around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the velocity vectors near the front baffle flow along the vertical wall, and then concentrate on the upper opening of the front baffle. The velocity profiles circulate in the front and rear baffle. These profiles are related to the Reynolds number (Re) or the flow intensity. Velocity profiles at lower Re number showed complicated mixing to obtain the velocities and concentrate on the lower opening of the rear baffle as front wall. Numerical simulations were performed to investigate the effects of the baffle and obtain the velocity profiles between the two baffles. In this study, a commercial CFD package, Fluent 6.3.21 with the turbulent flow modeling, k-${\epsilon}$ are adopted. The path line and local axial velocities are calculated between two baffles using this program.

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF

A Study on Fouling Phenomena of in Petroleum Chemical Process (석유화학공정내에서 원유의 파울링 현상에 관한 연구)

  • Lee, Dong Rak;Ryu, Sang Ryoun;Park, Sang Jin;Cho, Wook Sang;Kim, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.443-452
    • /
    • 1996
  • Fouling is caused by sedimentation and corrosion of polymer, heavy paraffine, chemicals, heavy organics, asphaltene, etc. in the entire chemical process of heat exchanger, boiler, desalter, etc. Fouling phenomena remains a serious operating problem which results in increased energy consumption, increased pressure drops, reduction or complete loss of products yield, and increased maintenance costs. In order to calculate the separated amounts of foulants and to control the fouling process, the predictive model is developed which is based on Scott & Magat polymer solution theory, Peng-Robinson EOS, BWR EOS, and continuous and multicomponent thermodynamics.

  • PDF