• Title/Summary/Keyword: Boil-off gas

Search Result 77, Processing Time 0.026 seconds

An Economic Analysis on Slush Hydrogen Containing Liquid and Solid Phase for Long-Term and Large-Scale Storage (장주기/대용량 수소저장을 위한 액체/고체기반 Slush 수소의 저장 비용 분석)

  • PARK, SUNGHO;LEE, CHANGHYEONG;RYU, JUYEOL;HWANG, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • Slush hydrogen containing liquid and solid hydrogen is expected to achieve zero boil-off by suppressing boil-off gas because heat of fusion for solid absorbe the heat ingress from atmosphere. In this paper, quantitative analysis on storage cost considering specific energy consumption between 1,000 m3 class liquid hydrogen storage system with re-liquefaction and slush hydrogen storage system during equivalent zero boil off period. Even though approximately 50% of total storage capacity should be converted into solid phase during the initial cargo bunkering, total energy consumption to convert into slush hydrogen is relatively 25% less than re-liquefaction energy for boil off hydrogen during zero boil off period. That's because energy consumption of slush phase change take up only 1.8% of liquefaction energy. moreover, annual revenue requirement including CAPEX, OPEX and electric cost for slush hydrogen storage could be more reduced approximately 32.5% than those of liquid hydrogen storage and specific energy storage cost ($/kg-H2) could also be lowered by about 41.7% compared with liquid hydrogen storage.

A Study on the BOG Re-liquefaction System based on the Reverse Brayton Refrigeration Cycle for LNG Carriers (역 브레이튼 냉동사이클을 이용한 LNG 운반선의 증발기체 재액화 시스템에 관한 연구)

  • Chin, Young-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.149-154
    • /
    • 2007
  • The LNG carriers have been propelled by steam turbines and the LNG boil-off(BOG) has been used as fuel or vented. However, as the alternative propulsion systems such as diesel engines are being equipped on the LNG carriers for better fuel efficiency, a need for the LNG BOG re-liquefaction system that liquefies the BOG and sends the liquid BOG back to the LNG cargo has arisen in recent years. This study investigates the design of the BOG re-liquefaction system based on the reverse Brayton refrigeration cycle. The thermodynamic and heat exchanger analysis are carried out and the limitations to the system performance are discussed.

A Study on the thermal pinch problem in the counterflow heat exchanger (역대향류 열교환기의 열 핀치(thermal pinch)에 관한 연구)

  • Choi, Sung-Eun;Chin, Young-Wook
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.659-667
    • /
    • 2008
  • The LNG carriers have been propelled by steam turbines and the LNG boil-off(BOG) has been used as fuel or vented. However, as the alternative propulsion systems such as diesel engines are being equipped on the LNG carriers for better fuel efficiency, a need for the LNG BOG re-liquefaction system that liquefies the BOG and sends the liquid BOG back to the LNG cargo has arisen in recent years. This study investigates the design of the BOG re-liquefaction system based on the reverse Brayton refrigeration cycle. The thermodynamic and heat exchanger analysis are carried out and the limitations to the system performance are discussed.

  • PDF

Cycle Analysis on LNG Boil-off Gas Re-Liquefaction Plant

  • Chin, Y.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.34-38
    • /
    • 2006
  • Cycle analysis was performed in order to find the optimum design point of the LNG Boil-off gas re-liquefaction system. Thermodynamic analysis revealed the system could be defined by three state variables. Thus the system performance could be described by the three cold endpoint temperatures of the three-pass heat exchanger. This enabled us to investigate the cycle performance in terms of the heat exchanger parameters. To get access to the cycle states of higher system performances, larger heat exchangers were found necessary. Also the thermal pinch in cryogenic heat exchangers was found to act as a limiting factor to the system performance.

Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants (Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선)

  • Ha, Seong-Yong;Choi, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

A Theoretical Study on Boil-off Gas Generated from Cooling Process for Cryogenic Components Using Liquid Hydrogen (액체 수소를 활용한 극저온 부품의 냉각 과정에서 발생하는 BOG에 관한 이론적 연구)

  • DONG WOO HA;HYUN WOO NOH;YOUNG MIN SEO;TAE HYUNG KOO;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.615-622
    • /
    • 2023
  • In this study, the theoretical analysis focused on the quantity of liquid hydrogen required for cooling down to 20 K, as well as the generation of boil-off gas (BOG) from the cooling process of the cryogenic components. The study involved calculating the amount of liquid hydrogen needed to achieve the desired temperature for the cryogenic components and subsequently determining the resulting BOG production at various reference temperatures. It was shown that it was important to efficiently lower the temperature of cryogenic parts through preliminary cooling. As a result, the reference temperature and pressure had an influence on the BOG generation on the cooling of cryogenic components using liquid hydrogen.

A Study on Development of Mobile LNG Yard Tractor Refueling Standards (이동식 LNG 야드트랙터 충전 기준 개발 연구)

  • Ryou, Young-don;Yu, Chul-hee;Koo, Bon-deuk;Lee, Dong-won
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.59-64
    • /
    • 2018
  • As part of measures to reduce fine dust, the government is promoting a project to convert the fuel of Yard Tractors(YT, tractors operated at ports), from diesel to LNG (Liquefied Natural Gas). While a port having a small number of yard tractors, it is not proper to construct a stationary LNG fueling station and supply LNG to YT due to a problem of BOG (Boil off gas) generation. Therefore, it is necessary to make a regulation and a standard on mobile LNG YT refueling station installation and inspection as an alternative. In this study, we have investigated domestic and foreign mobile LNG refueling cases and refueling standards, including the USA and Europe. In addition, we have suggested the risk reduction method according to the cause after investigation of the cause of LNG accidents. And last, based on the proposed risk reduction measures, we have proposed an amendment to the Regulation of the Urban Gas Business Law in Korea. The proposed mobile LNG YT refueling amendment of the Regulation includes ; maintenance of the safety distance from the protection facility, installation of an interlock device to prevent refueling in places other than the authorized place, installation of the identification system through biometrics, separation of the tank lorry and tow vehicle before refueling, checking the wheel fixed status of tank lorry before refueling, construction of the impounding area, safety measures before, during and after refueling, etc. The safety standards proposed in this study could be used as a reference in establishing standards for mobile LNG vehicle refueling in the near future.

Thermal Analysis of Insulation System for KC-1 Membrane LNG Tank (KC-1 Membrane LNG 탱크 단열시스템의 열해석에 관한 연구)

  • Hyeon-won, Jeong;Tae-hyun, Kim;Seog-soon, Kim;W.Jaewoo, Shim
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.91-102
    • /
    • 2017
  • Recently, a new type of LNG membrane Tank called the "KC-1 membrane LNG Tank" was developed by KOGAS (Korean Gas Corporation). It is necessary to estimate the temperature distribution of the hull structure and insulation system for this new LNG tank, as well as the BOR (Boil-Off Rate) when exposed to outside temperature conditions to ensure the integrity of the tank structure and limit LNG evaporation, from a safety evaluation point of view. In this study, temperature distribution calculations for the hull structure and insulation system of the KC1 membrane tank were compared by employing four numerical approaches under the IGC condition. Approaches 1-3 studied 2D simulations and approach 4 used a 3D numerical simulation. Approach 1 was calculated by in-house Excel VBA codes and the three other approaches utilized ANSYS Fluent. The BOR of approach 4, the 3D simulation case, for the IGC condition was 0.0986%/day.

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.