• Title/Summary/Keyword: Bohr's inequality

Search Result 2, Processing Time 0.016 seconds

BOHR'S INEQUALITIES IN n-INNER PRODUCT SPACES

  • Cheung, W.S.;Cho, Y.S.;Pecaric, J.;Zhao, D.D.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.127-137
    • /
    • 2007
  • The classical Bohr's inequality states that $|z+w|^2{\leq}p|z|^2+q|w|^2$ for all $z,\;w{\in}\mathbb{C}$ and all p, q>1 with $\frac{1}{p}+\frac{1}{q}=1$. In this paper, Bohr's inequality is generalized to the setting of n-inner product spaces for all positive conjugate exponents $p,\;q{\in}\mathbb{R}$. In. In particular, the parallelogram law is recovered and an interesting operator inequality is obtained.

  • PDF