• Title/Summary/Keyword: Bogie roller rig

Search Result 31, Processing Time 0.024 seconds

Roller Rig Test of Semi-High Speed EMU Bogie Developed for Narrow Gauge (협궤용 준고속 전동차 개발 대차의 주행 성능 시험)

  • Yang, Hun-Suk;Lee, Won-Sang;Nam, Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1282-1288
    • /
    • 2006
  • Upon demands for the requests of rapid, safe and comfort transit, the proven high speed bogie having not only high-quality but also good running performance is required by customer all over the railway vehicle for narrow gauge. Hereupon, the running test on roller testing rig for developed semi-high speed bogie for narrow gauge was carried out in order to verify the running performance and safety. The aim of the test is to assess the dynamic behaviour of the bogie on straight track including the running stability, ride quality, modal frequency and dynamic response.

  • PDF

Analysis of the Vibration Characteristics of a High-Speed Train using a Scale Model (축소모델을 통한 고속철도 차량의 진동특성 해석 및 검증)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • A scaled version of a roller rig is developed to demonstrate the dynamic characteristics of a railway vehicle for academic purposes. This rig is designed based on Jaschinski's similarity law. It is scaled to 1/10 of actual size and allows 9-DOF motion to examine the up and down vibration of a train set. The test rig consists of three sub-hardware components: (i) a driving roller mechanism with a three-phase AC motor and an inverter, (ii) a bogie structure with first and second suspensions, and (iii) the vehicle body. The motor of the rig is capable of 3,600rpm, allowing the test to simulate a vehicle up to a maximum speed of 400Km/hr. Because bearings and joints are properly connected to the sub-structures, various motion analyses, such as a lateral, pitching, and yawing motion, are allowed. The slip motion between the rail and the wheel set is also monitored by several sensors mounted in the rig. After the construction of the hardware, an experiment is conducted to obtain the natural frequencies of the dynamic behavior of the specimen. First, the test rig is run and data are collected from six sets of accelerometers. Then, a numerical analysis of the model based on the ADAMS program is derived. Finally, the measurement data of the first three fundamental frequencies are compared to the analytical result and the validation of the test rig is conducted. The results show that the developed roller rig provides good accuracy in simulating the dynamic behavior of the vehicle motion. Although the roller rig designed in this paper is intended for academia, it can easily be implemented as part of a dynamic experiment of a bogie and a vehicle body for a high-speed train as part of the research efforts in this area.

Evaluation of Running Performance of the Composite Bogie under Different Side Beam Stiffness (사이드 빔 강성에 따른 복합소재 대차의 주행성능 평가)

  • Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a running performance evaluation and roller rig test was conducted to evaluate the applicability of a composite bogie frame, which has the role of the primary suspension. The composite bogie frame was made of a GEP224 glass/epoxy prepreg. Vehicle dynamic analysis was carried out on the composite bogie with three different kinds of side beam thicknesses (50 mm, 80 mm, and 150 mm). From the results, the composite bogie with a side beam thickness of 80 mm satisfied all the dynamic design requirements. Although the composite bogie with the side beam thickness of 50mm also met the design requirements, its critical speed was just a 2% margin to the requirement. In contrast, the model of the side beam thickness of 150mm did not meet the ride comfort. In addition, a composite bogie frame with the side beam thickness of 80 mm was fabricated and installed on a complete bogie. Moreover, the roller rig test using the fully equipped bogie was performed to evaluate the critical speed. During the test, the lateral excitation was imposed on the wheelsets to realize the rail irregularity. There was no divergence of the lateral displacement of the wheelsets while increasing the speed. The measured critical speed was similar to the predicted result.

A Study on the Curving Performance of a Scaled Bogie on a Scaled Curve Track (축소 곡선 트랙상에서의 축소 대차 곡선주행특성 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.613-618
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig, but testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. Testing the railway bogie on the full scale test rig is desirable, but it caused many problems relating to test costs and test time. As a possible alternative to overcome these problems, a small scaled test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied a scaled track to test the bogie steering performance. For this purpose, we designed the 1/5 scaled test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the sealed curve track through the testing using 1/5 scaled bogie.

An Experimental Study on Validation of Nonlinear Critical Speed (비선형 임계속도 검증을 위한 실험적 연구)

  • 정우진;김성원
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • This paper addresses the experimental study on the nonlinear critical speed and the validity of simple prediction formulation. The experiment on nonlinear critical speed is carried out using roller rigs, which has been impossible on track because of a possibility of an accident. In addition, experiment for a bogie is performed to check the difference in modeling a full railway vehicle and a bogie. It is found that nonlinear critical speed proves to be an inherent phenomenon of a railway vehicle itself and the difference of test results between a full railway vehicle and a bogie is comparatively negligible. Finally. the accuracy of simple prediction formulation for outbreak velocity and response frequency in hunting is investigated.

  • PDF

Evaluation of Critical Speed for Active Steering Bogie Prototype (능동형 시제 조향대차의 임계속도 평가)

  • Hur, Hyun Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • Critical speed analysis was conducted for a active steering bogie prototype, developed to improve the curving performance of railway vehicles. The critical speed for the design concept was about 169.2k m/h. To validate the analysis result, we performed a critical speed test for the prototype bogie using a roller-rig tester. The test results showed that the critical speed for the prototype bogie was about 165 km/h. From the analysis and test results, The critical speed for the prototype bogie was determined to be 165 km/h. Considering the maximum operating speed of the test vehicle is 100 km/h, the prototype bogie is considered stable.

Investigation of Vehicle Dynamic Behavior of Composite Bogie Under Different Rubber Bushing Stiffness Values (고무부싱의 강성에 따른 복합소재 대차의 동적거동 평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Lee, Woo Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.303-309
    • /
    • 2015
  • In this study, a vehicle dynamic analysis and roller rig test were performed to evaluate the applicability of a suspensionless composite bogie to railway vehicles. A vehicle dynamic analysis was carried out under different rubber bushing stiffness values. The stiffness of the rubber bushing that plays a role in guiding wheel sets was varied in the range of 10-100 MN/m, in 10-MN/m steps. Based on the results, the composite bogie with a rubber bushing stiffness of more than 40 MN/m satisfied the design requirements. In addition, a rubber bushing with a stiffness of 81 MN/m was fabricated, and a roller rig test was performed. Based on the test results, the vehicle equipped with the composite bogie had a critical speed of 363 km/h, which agreed with the simulation result within an error of 10%.

A Study on the Factors Influencing the Abnormal Vibration of the Lateral Direction in Railway Vehicles Caused by Hysteresis of Critical Speed (임계속도 이력현상에 의한 철도차량 횡방향 이상 진동에 영향을 미치는 인자들에 관한 연구)

  • 정우진;심재경;조동현
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.265-275
    • /
    • 2001
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger cars. It is found that there are some factors and its operation region to make the nonlinear critical speed reacts to them more sensitively than the linear critical speed. The simulation results show that a self steering bogie system can be a substitute proposal to improve curving Performance together with the reduction of hysteresis of critical speed. Full scale roller rig test is carried out for the validation of the numerical results. Finally, it is certified that wear of wheel profile and stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict the hysteresis of critical speed precisely.

  • PDF

A study on the Dynamic analysis of 1/5 scale derailment simulator model (소형 탈선 시뮬레이터 축소모델 동특성 해석에 관한 연구)

  • Lee, Se-Yong;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • A roller rig has been widely used in the study about dynamic stability and railway safety. However, the cost for constructing the roller rig and the difficulty in adjusting the design parameters for vehicle systems lead to the development of a small scale simulator which is cheaper than the large scale test systems and easy to control the parameters affecting dynamic characteristics of the railway vehicle. For the operation of the small scale test system called a small scale simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF