• Title/Summary/Keyword: Bogie Frame

Search Result 133, Processing Time 0.024 seconds

A Study for the Magnetic and Electric Loading ratio of AC induction Motor for Traction Purpose (AC 견인전동기의 장하비 (裝荷比)에 관한 연구)

  • Kwon, J.L.;Park, J.T.;Lee, K.J.;Lee, J.Y.;Kim, K.C.;Lee, J.I.;Kim, Y.D.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.702-704
    • /
    • 2000
  • Designing of the squirrel cage AC Traction Motor has many difficulties which has to be small shape in order to be suitable into bogie frame, high efficiency and light weight. It means that induction motor for tractive efforts has to be different magnetic and electric loading ratio from industrial induction motor. This paper is devoted to an examination of how this ratio affects overall design concept and. hence the main design points for traction motor. Also studied is the changed coefficients of the magnetic and electric loading ratio squirrel cage induction motor for the traction purpose, which has been already identified from the referance book for industrial purpose induction motor.

  • PDF

The Dynamic Interaction Between Propulsion And Levitation System In a MAGLEV (자기부상열차의 추진시스템과 부상시스템의 상호 영향)

  • 김국진;강병관;이종성
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.119-128
    • /
    • 1998
  • An electromagnets and a single-sided linear induction motor(SLIM) are used for suspension and propulsion equipment respectively. The electromagnets and SLIM are installed in the same frame, called a bogie, to reduce the volume under the vehicle floor and to raise the response charateristics to follow the track. Then the 3-dimensional forces(thrust force, normal force, side force) generated by SLIM direct]y affect the suspension system as the disturbance force. Moreover, in the running condition, the gap length variation in the electromagnets is the same as the SLIM. Therefore, the mutual interaction between the electromagnets and the SLIM is an important problem to realize the smaller gap length. In this paper, the dynamic interaction is analyzed and confir

  • PDF

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

Influence of Vehicle Vibration on Track Geometry Measurement (차량 진동이 궤도 선형 측정에 미치는 영향)

  • Bae, Kyu-Young;Yong, Jae Chul;Kim, Lee-Hyeon;Kwon, Sam-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.644-650
    • /
    • 2016
  • Track maintenance works based on track geometry recordings are essential to enhance the safety and comfort of railway transportation. Usually, the track irregularity has been measured by a special inspection trains which all were imported from abroad. Because the inspection train speed is limited under 160 km/h, it takes a long time to inspect railways and there is difficulty in daytime operation. To solve this problem, we started to develop a track geometry measuring system (TGMS) with measurement speed up to 300 km/h which can be installed in commercial vehicles such as HEMU-430X. In this paper, we introduce a newly developed inertial TGMS and propose two inertial navigation system (INS) algorithms (method A, B) for measuring track geometry. In order to investigate advantage and disadvantage of each algorithm, we performed vibration test of the TGMS, which was simulated by 6-axis shaking table. Through the vibration test, we analyzed the influence of vehicle vibration on the TGMS which will be installed on bogie frame. To the vibration test, two methods satisfied the required accuracy of track geometry measurement under the level of the actual vehicle vibration of HEMU-430X train. Theoretically, method A is sensitive to vehicle vibration than method B. However, HEMU-430X's bogie vibration frequency range is out of interest range of measurement system. Therefore, method A can also apply the HEMU-430X train.

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Investigating Natural Frequency Analysis and Measurement of Railway Vehicle to Avoid Resonance (공진회피를 위한 철도차량의 고유진동수 해석 및 측정에 관한 연구)

  • Hong, Do-Kwan;Jeong, Jae-Boo;Jung, Seung-Wook;Kim, Gyeong-Bae;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.713-719
    • /
    • 2012
  • This paper deals with the natural frequency analysis and two experiments to evaluate first twisting and bending natural frequency of railway vehicle. The KS R 9228 testing method is generally performed as pseudo FRF(frequency response function) which is widely used by two accelerometers. The exciting method is utilized using the load weight(1 ton release). The modal testing is used to verify KS R 9228 testing result and the natural frequency analysis result. The first twisting and bending natural frequency should be above 10 Hz by resonance which is mostly generated between bogie and vehicle frame exciting low frequency. The first twisting and bending natural frequency of railway vehicle are successfully verified between analysis and test.

A Study on Safety Evaluation Methods for Electric Multiple Units (도시철도차량의 안전진단평가 기법에 관한 연구)

  • Chung J.D.;Han S.Y;Park K.J.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.374-377
    • /
    • 2005
  • Automobile is in charge of most transportation system in modern urban city. However, in fact, cause of problem of road state, environment, and the other reasons, urban transit system is using as Mass Transit nowadays. Nevertheless Urban transit system is considering many kind of safety fact of that system which is increasing continuously nowadays, it occurs various train accident. This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

  • PDF

A Study on the Applying of Balancing Control and Safety Monitoring Technology of Cargo on the Freight Train (화물열차 적재화물의 균형제어 및 안전모니터링기술 적용 연구)

  • Han, Seong-Ho;Han, Young-Jae;Lee, Suk;Kim, Young-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.224-228
    • /
    • 2017
  • Recently, in order to improve the efficiency of freight transportation on existing lines, a new freight train model is needed to develop urgently. The weight balance of the cargo for the freight vehicle is very important for the stability of the running train and the safe transportation of the cargo. For achieving the cargo weight balance, we proposed a Cargo Balancing Control(CBC) system on the Freight vehicle equipped in between under frame of car body and bogie system. The Cargo Safety Monitoring(CSM) system was designed to supervise status of the Cargo on freight train. The monitoring system can display real time status data from sensors and various signals effectively. We suggested that this paper is a very useful approach for keeping the safety of running freight trains on existing lines.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Dynamic Property Evaluation of Four-Harness Satin Woven Glass/epoxy Composites for a Composite Bogie Frame (복합소재 대차프레임용 4매 주자직 유리섬유/에폭시 복합소재의 진동특성평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Seo, Sung Il;Lee, Woo Geun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, the natural frequency and damping ratio of a four-harness satin woven glass/epoxy composite material are evaluated by means of modal tests and a finite element analysis. To achieve this goal, glass/epoxy beam specimens with different lengths and thicknesses were manufactured via autoclave curing. In the test, the maximum damping ratio was found to occur at the lowest test frequency. As the test frequency increased, the damping ratio decreased exponentially to a critical value. After that value, the damping ratio increased gradually to the maximum test frequency.