• 제목/요약/키워드: Body stability

검색결과 1,090건 처리시간 0.03초

체간 안정성을 위한 전동침대의 제어시스템 설계 (Control System Design of Electric Operated Adjustable Bed for Body Posture Stability)

  • 배주환;문인혁
    • 재활복지공학회논문지
    • /
    • 제6권2호
    • /
    • pp.55-62
    • /
    • 2012
  • 본 논문에서는 하나의 접촉식 리미트스위치(limit switch)를 사용하여 등판과 대퇴판의 사잇각을 항상 90도 이상으로 유지할 수 있는 자세제어시스템을 제안한다. 이를 위해 등판 기구와 대퇴판 기구의 기구학 해석을 수행하고, 설계에 필요한 최적설계변수를 결정한다. 이 해석 결과를 이용하여 프로토타입 자세제어시스템을 제작한다. 시뮬레이션과 실험을 통해 등판과 대퇴판 중 하나가 상승하더라도 등판과 대퇴판의 사잇각이 항상 90도 이상 유지되는 것을 보인다. 이 결과로부터 본 연구에서 제안하는 자세제어 방법이 사용자의 체간 자세안정성을 유지할 수 있음을 보인다.

  • PDF

An Orbital Stability Study of the Proposed Companions of SW Lyncis

  • Hinse, T.C.;Horner, Jonathan;Wittenmyer, Robert A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권3호
    • /
    • pp.187-197
    • /
    • 2014
  • We have investigated the dynamical stability of the proposed companions orbiting the Algol type short-period eclipsing binary SW Lyncis (Kim et al. 2010). The two candidate companions are of stellar to substellar nature, and were inferred from timing measurements of the system's primary and secondary eclipses. We applied well-tested numerical techniques to accurately integrate the orbits of the two companions and to test for chaotic dynamical behavior. We carried out the stability analysis within a systematic parameter survey varying both the geometries and orientation of the orbits of the companions, as well as their masses. In all our numerical integrations we found that the proposed SW Lyn multi-body system is highly unstable on time-scales on the order of 1000 years. Our results cast doubt on the interpretation that the timing variations are caused by two companions. This work demonstrates that a straightforward dynamical analysis can help to test whether a best-fit companion-based model is a physically viable explanation for measured eclipse timing variations. We conclude that dynamical considerations reveal that the proposed SW Lyncis multi-body system most likely does not exist or the companions have significantly different orbital properties from those conjectured in Kim et al. (2010).

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Aerodynamic stability for square cylinder with various corner cuts

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.173-187
    • /
    • 1999
  • The flow around a structure has been an important subject in wind engineering research. There are various kinds of unstable aerodynamic phenomena with regard to a bluff body. In order to understand the physical mechanism of aerodynamic and aeroelastic instability of a bluff body, the relations between the flow around structures and the motion of body with various section shapes should be investigated. Based on a series of wind tunnel tests, this paper addresses the aerodynamic stability of square cylinder with various corner cuts and attack angles in the uniform flow. The test results show that the models with corner cut produced generally better behaviour for the galloping phenomenon than the original section. However, the corner cut method can not prevent the occurrence of the vortex-induced vibration(VIV). It is also shown that as the attack angle changes, the optimum size of corner cut changes also. This means that any one specific size of corner cut which shows the best aerodynamic behaviour throughout all the cases of attack angles does not exist. This paper presents an intensive study on obtaining the optimum size of corner cut for the stabilization of aerodynamic behaviour of cylinders.

틸팅을 이용한 4족 보행 로봇의 정적 보행 알고리즘 (Static Walking Algorithm for a Quadruped Robot using Tilting)

  • 이순걸;조창현;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.675-679
    • /
    • 2001
  • This paper presents walking algorithm for a quadruped robot that does not have an upper body. Tilting motion is added to the planned walking trajectory instead of using an extra body segment that is independent on walking trajectory. Area and tracking algorithms are proposed as tilting method and compared with that of off-line tilting and that of no tilting. Computer simulation shows that stability of tilted walking is more improved than that of the usual walking algorithm for general walking paths. It also shows that the tracking method guarantees stability and best mobility.

  • PDF

보조연료의 공급이 확산화염의 보염특성에 미치는 영향 (Stabilization Characteristics of Diffusion Flame with Auxiliary Fuel Supply through a Bluff Body)

  • 안진근;송규근
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 1996
  • The stabilization characteristics of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated by varying main fuel injection angles and auxiliary fuel injection conditions. The flame stability limits, temperature and length of recirculation zone, direct and schlieren photographs of flames were measured in order to study the stabilization mechanism of the diffusion flame. The results of this investigation are as follows. The stability limits can be improved by the condition of the kind and quanity of the injected auxiliary fuel. The length and temperature decrease with injection of auxiliary fuel, and these phenomena are remarkable when LPG is injected into the recirculation zone. When the LPG is injected into the recirculation zone, flame remains sooty. Fluctuation of fuel and main stream is generated actively by air injection.

  • PDF

Analysis of Stability on Single-leg Standing by Wearing a Head Mounted Display

  • Woo, Byung Hoon
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.149-155
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effects of three visual conditions (eyes opened, eyes closed, and wearing of a head mounted display [HMD]) on single-leg standing through kinematics and kinetic analysis. Method: Twelve college students (age: $24.5{\pm}2.6years$, height: $175.0{\pm}6.4cm$, weight: $69.2{\pm}5.1kg$) participated in this study. The study method adopted three-dimensional analysis with six cameras and ground reaction force measurement with one force plate. The analysis variables were coefficient of variation (CV) of the center of body mass, head movement, ground reaction force, and center of pressure, which were analyzed using one-way analysis of variance with repeated measures according to visual conditions. Results: In most cases, the results of this study showed that the CV was significantly higher in the order of HMD wearing, eyes closed, and eyes opened conditions. Conclusion: Our results indicated that body sway was the largest in the HMD wearing condition, and the risk of falling was high owing to the low stability.

비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석 (Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory)

  • 박찬경;김석원;김회선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구 (A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

운동 후 멀티파라미터를 이용한 자세균형의 시스템 분석 (Analysis of Posture Balance System of using Multi-parameter after Exercising)

  • 김정래
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.145-150
    • /
    • 2011
  • 본 논문은 신체의 운동 이후에 자세의 움직임 변화를 주고, 다중파라미터를 이용하여 자세균형의 변화를 나타내는 시스템이다. 신체에 동작을 주어 자세 균형의 변화된 신호를 시스템에서 측정하고, 이를 분석하여 자세균형의 변화상태를 나타냈다. 신체의 자세변화는 머리와 상체를 움직여서 변화를 주었고, 자세 변화로 발생된 신호는 파라미터의 형태로 구성하여 측정할 수 있도록 하는 시스템으로 구성하였다. 데이터 신호는 데이터 획득 장치를 통하여 얻고, 신호 전달 과정에서 신호를 분석하여 논리적으로 분석하여 자세에 대한 평가를 할 수 있도록 조정하였다. 측정파라미터의 항목은 시각(Vision), 전정기관(Vestibular), 체성감각(Somatosensory), 중추신경계(CNS)이고, 측정파라미터의 평가는 안정성(Stability)으로 확인하였다. 본연구의 결과로 운동부하에 따른 인체의 자세변화에 따른 신체의 변화 상태를 분석할 수 있는 시스템을 구성 할 수 있음을 확인하고, 다양한 신체적 파라미터를 통한 모니터링 기능을 갖춘 시스템관리가 형성 될 것으로 예상한다.