• Title/Summary/Keyword: Body sensor network

Search Result 160, Processing Time 0.02 seconds

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose a parametric model for analyzing the motion information obtained from the acceleration sensors to measure the activity of the human body. The motion of the upper body and the lower body does not occur at the same time, and the motion analysis method using a single motion sensor involves a lot of errors. In this study, the 3-axis accelerometer is attached to the arms and legs, the body's activity data are measured, the momentum of the arms and legs are calculated for each channel, and the linear predictive coefficient is obtained for each channel. The periodicity of the upper body and the lower body is determined by analyzing the correlation between the channels. The linear predictive coefficient and the periodic value are used as data to measure the type of exercise and the amount of exercise. In the proposed method, we measured four types of movements such as walking, stair climbing, slow hill climbing, and fast hill descending. In order to verify the usefulness of the parameters, the recognition results are presented using the linear predictive coefficient and the periodic value for each motion as the neural network input.

Smart-clothes System for Realtime Privacy Monitoring on Smart-phones (스마트폰에서 실시간 개인 모니터링을 위한 스마트의류 시스템)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Park, Won-Ki;Park, Soo-Hyun;Lee, Sung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.962-971
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smart-phone App. This smart-clothes is able to monitor wearer users' health condition and activity levels through the gyro, temp and acceleration sensor. Sensed vital signs are transmitted to a bluetooth-enabled smart-phone in the smart-clothes. Thus, users are able to have real time information about their user condition, including activities level on the smart-application. User context reasoning and behavior determine is very difficult using multi-sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used Multi-black Filter and SVM processing behavior for 3-axis value as a representative value of one.

A Effective LMS Model Using Sensing System (센싱기술을 이용한 효과적인 LMS 모델에 관한 연구)

  • Kim, Seok-Soo;Ju, Min-Seong
    • Convergence Security Journal
    • /
    • v.5 no.4
    • /
    • pp.33-40
    • /
    • 2005
  • As e-learning studying is activated, learner's requirement increased. Therefore, need correct e-learning model augmented requirement of learner and new ubiquitous surrounding. In this treatise when, proposed to supplement studying contents relationship conversion service and cooperation studying service function to LMS that analyze existing e-learning model's limitation for ubiquitous environment e-learning model that can study regardless of, ubiquitously some contents and do based on SCORM ubiquitous-network and next generation sensor technology etc. Learning form conversion service senses a learner's surrounding situations and recognize his/her body condition using smart sensor technology and provides the learner with contents in the optimal form. Using sensing projects like Orestia and SOB, users can more effective collaborative learning service.

  • PDF

Precise Time-Synchronization for Separate systems (서로 분리된 시스템의 정밀한 시간동기화)

  • Lee, S.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.111-115
    • /
    • 2011
  • In this paper, we present a novel time-synchronization method for distributed systems to measure the body motion. The distributed system scheme is considered because human data acquisition systems tend to have a centralized controller with sensors connected with a long range of electric wires running through the subject's body, which results in inconvenience. Utilizing simple key switches and digital input ports for reading the key, the proposed method requires a very simple hardware structure, which means less power consumption compared with the well-known ubiquitous sensor network. After measuring the motion data as well as the synchronization pulses, the proposed method compensates, in offline, the difference of the sampling instance between the two systems by scaling the time difference. The paper presents experimental results to show the validity of the proposed method.

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

A New Emergency-Handling Mechanism based on IEEE 802.15.4 for Health-Monitoring Applications

  • Ranjit, Jay Shree;Pudasaini, Subodh;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.406-423
    • /
    • 2014
  • The recent advances in wireless communication systems and semiconductor technologies are paving the way for new applications over wireless sensor networks. Health-monitoring application (HMA) is one such emerging technology that is focused on sensing and reporting human vital signs through the communication network comprising sensor devices in the vicinity of the human body. The sensed vital signs can be divided into two categories based on the importance and the frequency of occurrence: occasional emergency signs and regular normal signs. The occasional emergency signs are critical, so they have to be delivered by the specified deadlines, whereas the regular normal signs are non-critical and are only required to be delivered with best effort. Handling the occasional emergency sign is one of the most important attributes in HMA because a human life may depend on correct handling of the situation. That is why the underlying network protocol suite for HMA should ensure that the emergency signs will be reported in a timely manner. However, HMA based on IEEE 802.15.4 might not be able to do so owing to the lack of an appropriate emergency-handling mechanism. Hence, in this paper, we propose a new emergency-handling mechanism to reduce the emergency reporting delay in IEEE 802.15.4 through the modified superframe structure. A fraction of an inactive period is modified into three new periods called the emergency reporting period, emergency beacon period, and emergency transmission period, which are used opportunistically only for immediate emergency reporting and reliable data transmission. Extensive simulation is performed to evaluate the performance of the proposed scheme. The results reveal that the proposed scheme achieves improved latency and higher emergency packets delivery ratio compared with the conventional IEEE 802.15.4 MAC.

Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device (모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘)

  • Shin, Seung-Hyuck;Kim, Hyun-Wook;Park, Chan-Gook;Choi, Sang-On
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

Implementation of Patient Monitoring System based on Mobile Healthcare (모바일 헬스케어 기반의 환자 모니터링 시스템 구현)

  • Kim, Kyoung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose an patient monitoring system which is suitable for mobile healthcare system. The mobile healthcare system is using portable device such as smartphone and it consists of small computing device. The mobile healthcare system is carry out same performance with desktop computer. We designed medical message structure based on TinyOS to transmit patient's biometric data on the smartphone of medical team, patient and family over the mobile carrier environment, and ported successfully in HBE-Ubi-ZigbeX using NesC. And We confirmed reliable transmission of biometric data on the smartphone by implementing the Android OS based patient information monitoring application to check the status of patient for medical team, patient and family.

내장형 및 부착형 인체센서네트워크의 연구동향 및 이슈

  • Ullah, Sana;Higgins, Henry;Gwak, Gyeong-Seop
    • Information and Communications Magazine
    • /
    • v.25 no.2
    • /
    • pp.18-25
    • /
    • 2008
  • 지능형 센서, 마이크로전자공학 및 집적회로, SoC (system-on-chip) 설계와 저전력 무선통신의 급속한 발달로 소형 지능형 센서노드의 개발을 촉진하여 왔다. 이러한 센서 노드는 인체센서네트워크(Body Sensor Network;BSN)의 개발에 초석이 되며, 향후 이 분야의 급속한 발전을 기대하게 된다. 초 저전력 RF 기술의 발전은 침투식 및 비침투식 장치들이 원격 단말과 데이터 전송을가능케 하며, 환자를 장기간 모니터링하여 의료 전문가에게 실시간으로 피드백 함으로써 건강관리 시스템의 일대 혁신을 일으키고 있다. 본 기고에서는 이식형 의료 장치들간의 무선통신 방법과 BSN 분야에서의 최근 기술적 발전동향에 주안점을 두어, 인체 내장형 및 인체 부착형 통신 네트워크 구조를 파악한 후, 이들 분야에서 미해결 쟁점과 난제에 관하여 분석하였다.

Implementation of user-identification based healthcare system using Zigbee (Zigbee를 이용한 사용자인식기반의 헬스케어 시스템 구현)

  • Kim, Jung Won;Shin, Jin Chul;Park, Hyung Kun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • Recently, a great many people are concerned about promoting their health because medical science and scientific technology has become much larger and more develop. Thus, the person who interested in health wants to confirm his condition whatever he may take a meal or exercise. But it is disappointed of our expectation. By reason that many people doesn't know what changes will occur in their body. In this paper, we are going to introduce our Health Care Managing System which could display a physical variation, in addition, we will also propose how to control serial data from wireless sensors. We implemented this system using ZigbeX and Java application.