• 제목/요약/키워드: Body segment length

검색결과 43건 처리시간 0.029초

A Study on Correlation among Length Changes of Body Surface Total lines and Segment Lines -Changed Amount Caused by the Lower Limb Movements- (체표(體表)길이 변화(變化)의 상관성(相關性) 연구(硏究) - 다리(下肢) 동작(動作)에 따른 변화량(變化量)을 중심(中心)으로 -)

  • Cho, Sung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제17권4호
    • /
    • pp.622-637
    • /
    • 1993
  • The Purposes of this study were to investigate the significant correlation among the length changes of body surface total lines and between the length changes of body surface total lines and those of component body surface segment lines, and to reveal anticipated relation among body surface length changes by the lower limb movement including all movement direction of hip joint, knee joint & ankle joint for the more functional clothing making & designing. 10 Crosswise & 5 lengthwise body surface total lines and 48 crosswise & 39 lengthwise body surface segment lines of 26 female college students aged from 18 to 24 years were measured directly on the body surface and analyzed by ANOYA & Multiple Comparison Test(Tukey), and the length changes of them were calculated as the difference of the mean length at Fl movement from the mean length at each movement and were analyzed by PEARSON CORRELATION. The results were as following : 1. Correlation among the length changes of body surface total lines (1) Correlation among the length changes of body surface total lines significantly changed by the movement ; 1) The more GA5 expanded, the more GA6 & GA7 each expanded, and the more GA18 expanded, the more GA1 & GA3 each expanded. 2) The more GA15 expanded, the less GA14 each contracted. 3) The more GA7 expanded, the larger GA17 contracted. 4) The more GA1 & GA18 expanded, the larger GA16 contracted, and the larger GM contracted, the less GA16 contracted. (2) Only GA7 and GA17(at F4) showed high (over r=0.7) correlation coefficient, But others' correlation coefficients were r=0.4~0.7. (3) Correlation coefficients among & between girth items and length items 1) Correlation coefficients among girth items were shown + ; between GA3 and GA4, GA5, GA8, between GA5 and GA6, GA7, GA9 each, between GA1 and GA6 and between GA4 and GA7. 2) Correlation coefficients among length items were shown + or - ; shown + between GA14 and GA15 and between GA17 and GA16 ; but Shown - Between GAlS and GA16. 3) Correlation coefficients between girth items and length items were mainly shown - : shown-between GA1 and GA16, GA17, between, GA4 and GA16, between GA6, GA7 each and GA17, between GA8 and GA18 ; but shown + between GA1, GA3 each and GA18 and between GA8 and GA14 were shown +. 2. Correlation between the length changes of body surface total lines and those of component body surface segment lines. (1) All correlation coefficients were + except A147 of GA14. (2) Correlation coefficient over r=0.7 was shown ; between GA3 and CB3, A35 each, between GA5 and A054, between GA6 and A63, between GA7 and A72, A74 each, between GA8 and A83, A84 each, between GA15 and A153, between GA16 and Al64, Al65 each, between GA18 and A189 : but was not shown between GA4, GA17 and it's component body surface segment lines each. (3) Characteristics of correlation between the length changes of body surface total lines and those of body surface segment lines ; 1) If significant correlation of body surface total lines were expansion parts, it's component body surface segment lines was also expansion segment and the otherwise were the same. But exception was shown between expansion line GA3 and A031 (at F4), between GA18 and AlS9 (at F6) and between GA14 and A147, so to speak GA3 & lines and GA14 was contraction total line oppositely A147 was expansion. 2) The more GA3, GAlS expanded, the less A031, A189 contracted. 3) The more GA14 contracted, the more A147 expanded. 4) All correlation except the above 2), 3), the more total lines (GA1, GA3, GA5, GA15, GA16, GA18) expanded, the more segment lines (A15, CB1, A31, A34, CB3, A52, A54, A153, A169, A181) expanded, or the larger total lines (GA14, GA16, GA17) contracted, the larger segment lines (A141, A142, A161, A164, A165, A172) contracted.

  • PDF

Changes in Body Surface Lines Caused By Lower Limb Movements in Designing Slacks (II) (슬랙스 설계를 위한 하지동작에 따른 체표선 변화 2)

  • Cho Sung-Hee
    • Korean Journal of Human Ecology
    • /
    • 제7권3호
    • /
    • pp.35-48
    • /
    • 2004
  • In this study, by determining lower limb movements which cause significant changes in body surface lines, body parts with the greatest maximum expansion and contraction rate respectively were illustrated in descending order. Using unmarried female university students aged 18 - 24 as subjects, a total of 32 body surface categories (15 body surface lines and 17 body surface segment lines) were measured in one static and 9 movement poses. In particular, expansion and contraction levels and rates were measured and used in the analysis. The analysis first involved the calculation of the average measurement per body part in body surface line in static pose as well as of the average expansion and contraction levels and rates in 9 lower limb movements. Two-way MANOVA and multiple comparison analysis (Tukey) were conducted on movements and individual somatotypes regarding measurement per body part and expansion and contraction rates. Movements which cause measurements of body surface lines differed significantly in body surface line in static pose versus in movement were then identified. Among average expansion and contraction rates in such movements, maximum average expansion and contraction levels, maximum average expansion and contraction rate, and classes of expansion and contraction rate were determined per body part. The results of this study are as follows. First, 5 lower limb movements; F2, F5, F6, F7, F8, which caused significant changes in body surface lines were determined and illustrated in table 4. Second, the levels, rates, and classes of expansion and contraction rate per body part are illustrated in Tables 5 and 6. Body parts with the greatest maximum expansion rate were, in descending order: upper segment of center back leg line, upper segment of inner leg line, middle segment of center front leg line, posterior crotch length, anterior knee girth, anterior thigh girth, center back leg line, girth at crotch height, anterior midway thigh girth, hip girth, anterior crotch length, knee girth, waist girth, inner leg line, thigh girth, and crotch length. Those with the greatest maximum contraction rate were, in descending order: anterior crotch length, upper segment of center front leg line, lower segment of center back leg line, center front leg line, and posterior thigh girth. The maximum expansion rates and maximum contraction rates, which ranged from 2.05 to $35.95\%$ and from -0.20 to $-30.16\%$ respectively, were classified per body part into 4 ABCD classes. The body part with maximum expansion was the upper segment of the center back leg line at vertical body surface line, expanding by $35.95\%$ or 16.03cm in F5 flexion movement. In contrast, the body part with maximum contraction was the anterior crotch length at vertical body surface line, contracting by $-30.16\%$ or -10.54cm in F5 flexion movement. Both, however, were the body parts to expand or contract the most among all horizontal and vertical body surface lines.

  • PDF

An Ergonomic Study on the Search of Body Surface Area Changed by Movements -In the Lower Trunk and Leg- (동작(動作)에 따른 체표면변화부위(體表面變化部位)의 모색(摸索)에 관한 인간공학적(人間工學的) 연구(硏究) - 하반신(下半身)을 중심(中心)으로 -)

  • Cho, Sung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제17권4호
    • /
    • pp.608-621
    • /
    • 1993
  • The Purposes of this study were 1)to find the body surface total line and segment line significantly(${\alpha}$=0.05) changed by the leg movement including all movement direction of hip joint, knee joint and ankle joint for the more functional clothing. 2)to classify them into 3 types-expansion type, contraction type, expansion & contraction type, and 3)to identify the characteristics of the body surface length changes. 10 Crosswise and 5 lengthwise body surface total lines and 48 crosswise & 39 lengthwise body surface segment lines of 26 female college students aged from 18 to 24 years were measured directly on the body surface and were analyzed by ANOVA & Multiple Comparison Test (Tukey). The results were as following : Body surface total lines significantly changed were all the body surface total lines except abdoman girth, 1/2thigh girth of lower leg and ankle girth, and these were classified into 3 types : Center front leg line belonged to expansion & contraction type, whereas lateral leg line, legscye girth, and total crotch length belonged to contraction type. The rest belonged to expansion type. Knee girth showed maximum expansion, whereas center front leg line showed maximum contraction. Body surface total lines have shown large expansion crosswise whereas lengthwise they have mainly shown contraction. At least more than one component segment line of each body surface total lines except abdoman girth and ankle girth have shown significant change. Top segment of inner leg line showed maximum expansion. whereas just below top segment of center front leg line showed maximum contraction. Crosswise all the body surface segment lines have shown expansion except inner back segments of thigh girth and 1/2thigh girth of upper leg which have shown contraction. Lengthwise they have shown both expansion and contraction according to the location of front or back, and below or upper 1/2thigh girth line except the component segment lines of lateral leg line, which has shown contraction only.(cf. figure 2. figure 3. and table 2-2).

  • PDF

A Study on the Design Factor for Increasing the Dynamic Fit of Slacks (슬랙스의 동적 적합성 향상을 위한 설계 요인 연구)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Costume
    • /
    • 제58권2호
    • /
    • pp.162-180
    • /
    • 2008
  • The purpose of this study is to find the basic design factors that affect the changes in body surface lines caused by lower limb movements, thereby resulting in slacks that fit well regardless of whether the human form is static or in motion. Using unmarried female university students aged 18-24 as subjects, a total of 32 body surface lines (15 body surface total lines and 17 body surface segment lines) were measured in one static and 9 movement poses, The analysis first involved the calculation of the expansion and contraction rates per body part in body surface line in 9 lower limb movements, Second, a factor analysis was conducted using the expansion and contraction rates of these changes in body surface line. The results of this study are as follows, According to the factor analysis, basic design factors that affect changes in body surface lines comprised 8 types of factors as illustrated in fig, 2-fig, 9, which explained 79.2% of total variate for the variables studied, Factor 1, comprising the lower segment of center back leg line, center front leg line and inner leg line, and lower limb girth except midway thigh girth and ankle girth below hip girth, accounted for 30.3% of total variance, Factor 2, comprising waist girth, the total and upper segment of center back leg line and center tront leg line, and front and back segment of crotch length, explained 17.4% of total variance, Factor 3, the total and upper segment of lateral leg line at the center, accounted for 56.5% of total variance in accordance with Factors 1, 2, and 3, Factor 4 was the contracting upper part of lower leg between legscye girth and midway thigh girth, Factor 5 comprised the total and upper segment of inner leg line and posterior knee girth, Factor 6 was the total crotch length, Factor 7 was the ankle girth, Factor 8 was the abdomen girth.

Development of tight-fit patterns for adult males according to the 3D body surface segment method (3D 체표면 분할 전개방법에 의한 성인 남성 밀착원형 설계)

  • Hong, Eun-Hee
    • The Research Journal of the Costume Culture
    • /
    • 제28권1호
    • /
    • pp.1-14
    • /
    • 2020
  • This study is based on a representative body shape drawn from previous studies that classify adult male torso shapes. In this study, a design method is proposed by developing a tight-fit pattern that can be easily developed into various items and designs using the body surface development figure. This is obtained by converting the 3D body shape of the model representing the representative body shape. The specific design method was conducted as follows. Actual measurement values were used for waist back length, waist-to-hip length, shoulder length. The scye depth was determined as C/4-1.7 cm, and the front and back Interscye was set at (1/2 × actual measurements)-0.2 cm. The front-back neck breadth was set to (1/5 × base neck circumference)-1.3 cm and (1/5 × base neck circumference) cm. The front-back neck depth was set to (1/5 × base neck circumference)-1.2 cm and 3.5 cm. Front chest circumference was C/4-1 (front-back difference)cm; (1/4 × back chest circumference) was C/4 + 1 (front-back difference) + 0.3 (dart amount) cm. Front waist circumference was W/4-0.2 (front-back difference) + 2.2 (dart amount) cm; back waist circumference was W/4 + 0.2 (front-back difference) + 2.5 (dartamount) cm; front hip circumference was H/4 + 0.2 (ease) + 0.2 (front-back difference) cm; and back hip circumference was H/4 + 0.2 (ease)-0.2 (front-back difference) cm; Front droop was 1.6 cm. The newly developed tight-fit pattern is expected to be of great use as a basis for garment construction.

Adult Morphological Measurements: An Indicator to Identify Sexes of Japanese Pine (솔수염하늘소(Monochamus alternatus) 성충의 형태 측정과 암수 구분)

  • 이상명;정영진;김동수;최광식;김영걸;박정규
    • Korean journal of applied entomology
    • /
    • 제43권1호
    • /
    • pp.85-89
    • /
    • 2004
  • Numerical measurements were made for fresh weight, body length and width, head width, and color and length of antenna of Japanese pine sawyer, Monochamus alternatus adults, a primary vector of pine wood nematode, Bursaphelenchus xylophilus in Korea. We measured 563 females and 601 males that emerged out of dead pine logs from 2001 to 2002. General linear model analysis showed that measurements of fresh weight, body length, and body width were significantly higher in females than in males. Head width was not significantly different between sexes. Antennal length of males was significantly longer than that of females. For females and males respectively, average fresh weights were 0.305g and 0.277g, body lengths 20.97mm and 19.93mm, body widths 6.52mm and 6.18mm, head widths 3.78mm and 3.70mm, and antennal lengths 31.19mm and 45.49 mm. Antennal length or ratio of antennal length to body length overlapped in some ranges between 2 sexes. Therefore antennal length itself or ratio of antennal length to body length could not be used as a definite criterion to discriminate sexes. However, check on color of the antennae of 4,033 adults revealed without exception that basal part of every segment of flagellum of female antenna was covered with whitish-grey hairs, while whole part of every segment of male flagellum was covered with brownish-black hairs. This characteristics might be a best way to differentiate sex of this species.

Vision-based Kinematic Modeling of a Worm's Posture (시각기반 웜 자세의 기구학적 모형화)

  • Do, Yongtae;Tan, Kok Kiong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제21권3호
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

Two New Species of Echiuricopus n. gen. (Copepoda, Poecilostomatoida) Associated with Echiurans from the Yellow Sea

  • Kim, Il-Hoi
    • Animal Systematics, Evolution and Diversity
    • /
    • 제32권1호
    • /
    • pp.9-20
    • /
    • 2016
  • Two new species of poecilostomatoid copepods associated with echiurans are described from an intertidal mud flat in the Yellow Sea. A new genus Echiuricopus is created to accommodate two new species, E. aprilis and E. tenuipes. Major differences between the two new species are displayed in body length, length of caudal ramus seta I, length/width ratio of leg 5 exopod, and armature of the first antennular segment. Echiuricopus n. gen. is closely related to the genus Goidelia Embleton, 1901, but is distinguished from the latter chiefly by having seven caudal setae, a claw-like process on the first antennular segment, one claw-like process on the maxillary syncoxa, the absence of an inner coxal seta on legs 1-4, different armatures on legs 1-4, and an elongate leg 5 exopod.

Morphological Diversity of Various Divisions of the Rabbit Colon (집토끼 결장 각 부위의 구조에 대한 광학 및 주사전자현미경적 관찰)

  • Chung, J.W.;Chun, M.H.;Oh, S.J.;Kwun, H.S.
    • Applied Microscopy
    • /
    • 제14권2호
    • /
    • pp.81-93
    • /
    • 1984
  • Structural differences in various divisions of the rabbit colon were investigated using light and scanning electron microscopy. For light microscopic study, various Portions of the colon from seven rabbits (2.5 kg body weight) were fixed in 10% neutral buffered formalin, and paraffin sections were stained with hematoxylin-eosin. Tissues for scanning electron microscopy were fixed in 1% glutaraldehyde-1.5% paraformaldehyde and postfixed in 1% $OsO_4$, dehydrated to 100% alcohol, transfered to isoamilacetate and dried by the critical point method. Subsequently, specimens were coated with gold and viewed with a JSM-35C scanning electron microscope. The colon displays a morphological diversity along its proximo-distal axis. Five regions can be discerned based on the macroscopic and microscopic characteristics. 1) The first segment immediately distal to the cecocolical junction possessing three teniae is approximately 5 cm ($4{\sim}6cm$) in length, and displays irregular folds of the mucosa oriented transversely similar to those of the cecum. 2) The second segment possessing three teniae is about 7 cm ($5{\sim}8cm$) in length, and is characterized by the papilla-like protrusions on the mucosal surface. 3) The third segment, possessing a single tenia is about 16 cm ($12{\sim}20cm$) in length, and also displays the papilla-like protrusions similar to the aforegoing segment. 4) Fusus coli, approximately 4 cm ($3{\sim}5cm$) in length, is free of teniae and exhibits longitudinal folds on the mucosal surface. These four portions together constitute the proximal colon. 5) The distal colon reaches a length of about 58 cm ($53{\sim}55cm$) and shows a pattern of surface irregularities with minor ridges on the mucosal folds.

  • PDF

Employing Magnetic Resonance Imaging(MRI) in the Estimation of the Biomechanical Body Segment Parameters of Korean Adults (MRI에 의한 한국인 신체분절의 생체역학적 모수치 산출)

  • Joo, Young-Hwa
    • Korean Journal of Applied Biomechanics
    • /
    • 제12권1호
    • /
    • pp.233-249
    • /
    • 2002
  • The purpose of this study was to employing MRI in the estimation of the biomechanical body segment parameters of Korean adults. for this purpose MRI study on 19 Korean living subjects were used to measurement. All the parameters that was concerned were inertial characteristics of human body mass of each segment, center of mass of them and the length of radius of gyration of them. The cross sectional images and saggital images of every 1cm interval were got using the 0.5 Tesla MRI from the top of head to the bottom of foot, whole body. And then, by tracing the images of the film and scanning them, got the area which the several tissues occupied in the image of slice. By summing the area of slice of each segment which were calculating and by multipling the density of the tissues, got the mass of segment and other inertial characteristics. The ratios of radius of gyration in both transverse axis and longitudinal axis though the segmental mass and segment length are as follow: male A : head($0.229\pm0.0029$), neck($0.256\pm0.0095$), thorax($0.374\pm0.0059$) abdomen($0.245\pm0.0020$), pelvis($0.368\pm0.0106$), thigh($0.288\pm0.0030$) shank($0.280\pm0.0043$), foot($0.277\pm0.0195$), upperarm($0.311\pm0.0074$) forearm($0.286\pm0.0051$), hand($0.253\pm0.0095$) female A : head($0.214\pm0.0032$), neck($0.254\pm0.0112$), thorax($0.295\pm0.0061$) abdomen($0.289\pm0.0021$), pelvis($0.329\pm0.0108$), thigh($0.288\pm0.0036$) shank($0.280\pm0.0047$), foot($0.243\pm0.0206$), upperarm($0.279\pm0.0083$) forearm($0.286\pm0.0048$), hand($0.229\pm0.0097$) male B : head($0.532\pm0.0006$), neck($0.533\pm0.0006$), thorax($0.658\pm0.0008$) abdomen($1.350\pm0.0022$), pelvis($0.875\pm0.0002$), thigh($0.213\pm0.0001$) shank($0.160\pm0.0001$), foot($0.152\pm0.0002$), upperarm($0.136\pm0.0002$) forearm($0.202\pm0.0002$), hand($0.273\pm0.0006$) female B : head($0.198\pm0.0002$), neck($0.335\pm0.0011$), thorax($0.238\pm0.0001$) abdomen($0.888\pm0.0001$), pelvis($1.318\pm0.0117$), thigh($0.095\pm0.0001$) shank($0.075\pm0.0001$), foot($0.181\pm0.0006$), upperarm($0.0.062\pm0.0001$) forearm($0.083\pm0.0001$), hand($0.105\pm0.0007$).