• 제목/요약/키워드: Body blade

검색결과 132건 처리시간 0.023초

헬리콥터 진동 하중 저감을 위한 능동 뒷전 플랩이 장착된 SNUF 블레이드의 유연보의 설계 및 해석 (Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibratory Load Reduction)

  • 임병욱;은원종;신상준
    • 한국항공우주학회지
    • /
    • 제46권7호
    • /
    • pp.542-550
    • /
    • 2018
  • 본 논문에서는 헬리콥터의 전진비행시 발생하는 허브 진동 하중 저감을 위해 설계된 능동 뒷전 플랩이 장착된 SNUF 블레이드의 무베어링 주 로터 적용 설계에 대해 살펴보았다. 이를 위해 EDISON의 박벽 복합재료 회전보 진동해석 프로그램(CORBA77_MEMB)을 이용하여 유연보의 단면 설계가 이루어졌다. 다물체 동역학 해석 프로그램 DYMORE를 이용하여 단면 설계에 따른 블레이드 동특성 및 능동 뒷전 플랩을 이용한 하중 제어의 특성을 예측하였다.

Navier-Stokes Simulation of Unsteady Rotor-Airframe Interaction with Momentum Source Method

  • Kim, Young-Hwa;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.125-133
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination as a whole. This often imposes a serious computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is to adopt a momentum source method in which the action of rotor is approximated as momentum source over a rotor disc plane in a stationary computational domain. This makes the simulation much simpler. For unsteady simulation, the instantaneous momentum sources are assigned only to a portion of disk plane corresponding to blade passage. The momentum source is obtained by using blade element theory with dynamic inflow model. Computations are carried out for the simple rotor-airframe model (the Georgia Tech model) and the results of the simulation are compared with those of the full Navier-Stokes simulation with moving mesh system for rotor and with experimental data. It is shown that the present simulation yields results as good as those of the full Navier-Stokes simulation.

머신러닝을 이용한 드론의 고장진단에 관한 연구 (Fault Diagnosis of Drone Using Machine Learning)

  • 박수현;도재석;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.

다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링 (Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics)

  • 민병문;노태수;송승호;최석우
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 2004
  • 본 논문에서는 로터 블레이드, 발전기, 로터 블레이드와 발전기에 연결된 고/저속 회전축 및 회전축간의 회전력을 전달하는 기어 시스템 등 다수의 몸체가 서로 상대적인 운동이 가능한 채 연결되어 있는 단일로터 수평축 풍력발전 시스템을 다몸체 시스템으로 간주한 후, 다몸체 역학을 이용한 풍력발전 시스템 모델링 기법을 제안하였다. 이를 기반으로 풍력발전 시스템의 성능 해석을 위한 시뮬레이터를 개발하였다. 그리고 다양한 시뮬레이션을 통해 제안된 풍력발전 시스템 모델링 기법과 시뮬레이터의 타당성을 검증하였다.

냉각홀 형상 변화에 바른 원형봉 선단의 막냉각 특성 연구 (A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes)

  • 김성민;김윤제;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.298-303
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The effect of coolant flow rates was studied for blowing ratios of 0.7, 0.9, 1.2 and 1.5, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

  • PDF

자유수평축 조류발전 시스템의 3차원 유동특성 (3D Flow Characteristics of a Free-Horizontal-Axis-Turbine Tidal Power Generation System)

  • 최진형;도덕희;조효제;이연원
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.51-55
    • /
    • 2010
  • Flow characteristics of a free-horizontal-axis-turbine (FHAT) current power generation system have been investigated by the use of a volumetric PTV. Three types of FHAT system (S50, SE50, S65) have been tested under the current speed 1.35 knot, 1.5 knot and 2 knot. The width of the blade installed around the body is 50 mm. Based upon the power generation characteristics of the FHAT, the flow features of the blade have been investigated. Among the three models it has been verified that the S65 is the most appropriate for power generations.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 구조 및 진동해석 (Structural and Vibration Analysis of Large Windturbine Rotor Considering the Rotational and Aero Load Effect)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.270-275
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are full? used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

  • PDF

APPLICATION OF DISTINCT ELEMENT METHOD TO SIMULATE MACHINE-SOIL INTERACTIONS

  • Oida, A.;Momozu, M.;Ibuki, T.;Nakashima, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.117-123
    • /
    • 2000
  • Using the modified DEM (Discrete Element Method), which we proposed in order to improve the accuracy of the simulation, soil behavior and reaction by lugs of rotating wheel and a soil cutting process by a high speed blade were calculated and compared with experimental data. The DEM is one of computational mechanics, where the object body is supposed as an assembly of small particles called elements and not a continuum as in the case of FEM. We can easily treat some discrete phenomena such as cracking, separating and sliding by the DEM. We had to modify the original mechanical model, which induced too free movement of elements, adding a tension spring, which would display the role of soil adhesion. The results of DEM simulations were successful from both the soil behavior and reaction points of view.

  • PDF

포텐셜 패널과 와류 조각 연계방법을 이용한 로터 공력 해석 (Potential Panel and Vortex Particle Coupling Analysis for Rotor Aerodynamics)

  • 장지성;정인재;이덕주
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.481-485
    • /
    • 2013
  • Rotor wake causes unsteady aerodynamics of rotor blade. So, accurate prediction of wake is very important and vortex method is good solution for this problem. Aerodynamic force of the rotor blade is calculated by potential panel method and the rotor wake is simulated by vortex particle method. The vortex particle method is easier to treat wake-body interaction and has better performance to expect the effect of ground and fuselage interaction. Rotor in hovering and forward flight condition is simulated through these methods. Thrust and surface pressure of rotor are compared with experiment data.

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF