• Title/Summary/Keyword: Body acceleration

Search Result 423, Processing Time 0.023 seconds

Correlation between Isokinetic Parameters of Knee Joint and Lower Extremity Function (무릎관절의 등속성 변수와 하지 기능의 상관관계)

  • Lee, Se-yun;Park, Jong-hyun;Jeon, Jeongwoo;Hong, Jiheon;Yu, Jaeho;Kim, Jinseop;Lee, Dongyeop
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • The flexors and extensors of the knee joint are essential for maintaining body stability. The purpose of this study was to investigate the correlation between the isokinetic parameters of the knee flexor and extensor muscles and the function of the lower extremity muscles. Twenty-two healthy adults participated in this study. The time to peak torque (TTP), acceleration time (AT), and peak torque (PT) of the knee flexor and extensor muscles were measured. A 20m sprint, Sargent jump, one leg hop test, and side shuffle were measured to evaluate lower extremity function. The correlation between each variable was analyzed using Pearson correlation coefficient. PT of the knee flexor showed a significant correlation with single leg hops and 6M hops in a single leg. PT of knee extensors was found to be significantly correlated with Sargent jumps and triple hops. Based on the results of this study, we suggest that the strength of the knee flexor and extensor muscles has the potential to be used to predict lower extremity function.

The Kinematic Analysis of Cross Over Step and Delivery Phase in Female Javelin Throwing Players (여자 창던지기 크로스 스텝과 딜리버리 국면의 운동학적 분석)

  • Lee, Young-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • This study analyzed kinematic variables about the cross step, the delivery and the release for women's javelin athletics recorded over 50m in the 2004 Busan International Athletics Competition. It was used the Kwon3D Motion Analysis Package Ver. 3.1 Program(Kwon, 2000) for analysing the kinematic variables about the distance, the velocity, and the angle, then we had the results as follows; 1 In the Cross step phase, the COG velocity was low because their step length was short. To keep the CM velocity from the approach to the last cross over step contact, the athletes have to keep the longer step length within about 130% of the athletics' height. 2. In the Delivery phase, the athletics' COG height was gradually lower, and the deceleration of the COG was going up. As the same in the cross step, Therefore the athletes have to increase the step length within about 100% of their height, in order to increasing the COG velocity. And it was shown they have to make small angle of the elbow as possible from the right foot contact to the left foot contact in order to being the big acceleration of the upperarm at the release phase. 3. In the release phase, it was shown to being low position of the release point as the COG was low and then the release velocity of the upperarm was low. Specially when the shoulder lean lateral angle is big at the release phase, it was shown they have a excessive release angle. And, when it was shown the high rotation angle of the shoulder, the shoulder was opened forward bigger than the trunk was opened forward. So the transmission of velocity from the proximal segments was a fast change.

Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number

  • Yoo, Si-Hyun;Kim, Jong-Bin;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.221-228
    • /
    • 2016
  • Objective: The purpose of this study was to investigate differences in gait parameters and symmetry between walking speed by using the Froude number and preferred walking speed. Method: Fifty adults (age: $21.0{\pm}1.7years$, body weight: $71.0{\pm}9.2kg$, height: $1.75{\pm}0.07m$, leg length: $0.89{\pm}0.05m$) participated in this study. Leg length-applied walking speed was calculated by using the Froude number, defined as Fr = ${\upsilon}^2$/gL, where v is the velocity, g is the gravitational acceleration, and L is the leg length. Video data were collected by using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden), with a 200-Hz sampling frequency during two-speed walking (preferred walking speed [PS] and leg length-applied walking speed [LS]) on a treadmill (Instrumented Treadmill, Bertec, USA). The step length, stride length, support percentage, cadence, lower joint angle, range of motion (ROM), and symmetry index were then calculated by using the Matlab R2009a software. Results: Step and stride lengths were greater in LS than in PS (p < 0.05). The right single-support percentage was greater in LS than in PS (p < 0.05). The hip joint angle at heel contact and toe-off were greater in LS than in PS (p < 0.05). The hip and knee joint ROM were greater in LS than in PS (p < 0.05). Conclusion: Based on our findings, we suggest that increased walking speed had a significant effect on step length, stride length, support percentage, and lower joint ROM.

Smart-clothes System for Realtime Privacy Monitoring on Smart-phones (스마트폰에서 실시간 개인 모니터링을 위한 스마트의류 시스템)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Park, Won-Ki;Park, Soo-Hyun;Lee, Sung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.962-971
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smart-phone App. This smart-clothes is able to monitor wearer users' health condition and activity levels through the gyro, temp and acceleration sensor. Sensed vital signs are transmitted to a bluetooth-enabled smart-phone in the smart-clothes. Thus, users are able to have real time information about their user condition, including activities level on the smart-application. User context reasoning and behavior determine is very difficult using multi-sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used Multi-black Filter and SVM processing behavior for 3-axis value as a representative value of one.

A MEMS-Based Finger Wearable Computer Input Devices (MEMS 기반 손가락 착용형 컴퓨터 입력장치)

  • Kim, Chang-su;Jung, Se-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1103-1108
    • /
    • 2016
  • The development of a variety of sensor technology, users smart phone, the use of motion recognition apparatus such as a console game machines is increasing. It tends to user needs motion recognition-based input device are increasing. Existing motion recognition mouse is equipped with a modified form of the mouse button on the outside and serves as a wheel mouse left and right buttons. Existing motion recognition mouse is to manufacture a small, there is a difficulty to operate the button. It is to apply the motion recognition technology the motion recognition technology is used only pointing the cursor there is a limit. In this paper, use of MEMS-based motion recognition sensor, the body of the two-point operation data by recognizing the operation of the (thumb and forefinger) and generating a control signal, followed by studies on the generated control signal to a wireless transmitting computer input device.

A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter (Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구)

  • Kim, Deok Gwan;Ju, Jin;Lee, Myeong Gyu;Hong, Dan Bi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.99-104
    • /
    • 2003
  • This paper described the general dynamic point for rotor design and the design procedure of low vibration blade. Generally, rotor rotating natural frequencies are determined to minimize hub loads, blade vibration and to suppress ground resonance at rotor design stage. First, through rotor frequency diagram, natural frequencies must be far away from resonance point and rotating loads generated from blade can be transformed to non-rotating load to predict fuselage vibration. Vibration level was predicted at each forward flight condition by calculating cockpit's vertical acceleration transferred from non-rotating hub load assuming a fuselage as a rigid body. This design method is applied to design current Next-generation Rotor System Blade(NRSB) and will be applied to New Rotor which will be developed Further.

Piezoelectric Vibration Energy Harvester Using Indirect Impact (간접 충격을 이용한 압전 방식 진동형 에너지 하베스터)

  • Ju, Suna;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1499-1507
    • /
    • 2017
  • This paper presents an impact-based piezoelectric vibration energy harvester using a freely movable metal sphere and a piezoceramic fiber-based MFC (Macro Fiber Composite) as piezoelectric cantilever. The free motion of the metal sphere, which impacts both ends of the cavity in an aluminum housing, generates power across a cantilever-type MFC beam in response to low frequency vibration such as human-body-induced motion. Impacting force of the spherical proof mass is transformed into the vibration of the piezoelectric cantilever indirectly via the aluminum housing. A proof-of-concept energy harvesting device has been fabricated and tested. Effect of the indirect impact-based system has been tested and compared with the direct impact-based counterpart. Maximum peak-to-peak open circuit voltage of 39.8V and average power of $598.9{\mu}W$ have been obtained at 3g acceleration at 18Hz. Long-term reliability of the fabricated device has been verified by cyclic testing. For the improvement of output performance and reliability, various devices have been tested and compared. Using device fabricated with anodized aluminum housing, maximum peak-to-peak open-circuit voltage of 34.4V and average power of $372.8{\mu}W$ have been obtained at 3g excitation at 20Hz. In terms of reliability, housing with 0.5mm-thick steel plate and anodized aluminum gave improved results with reduced power reduction during initial phase of the cyclic testing.

Effects of Bojungikgitang-gagambang on Longitudinal Bone Growth in Adolescent Rats

  • Lee, Min-Su;Kim, Ji-Young;Kim, Mi-Yeon;Chang, Gyu-Tae;Kim, Ho-Cheol
    • The Journal of Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • Objectives: This study was aimed to investigate the effect of Bojungikgitang-gagambang (BJIG) on longitudinal bone growth in rats. Methods: The BJIG treated group (300 mg/kg) and the control group (vehicle) were administered orally twice daily for 4 days. To investigate the effects of BJIG we measured body weight gain. The bone growth effect was analyzed by measuring between fluorescent lines marked with tetracycline, which plays the role of fluorescent dye on the surface of the tibia. Tetracycline was intraperitoneally injected. The height of growth plates in the epiphyseal plate was measured. The expression of bone morphogenetic protein-2 (BMP-2) and insuline-like growth factor-1 (IGF-1) was investigated by immunohistochemistry. Results: BJIG caused a significant acceleration of longitudinal bone growth of $349.7{\pm}15.9{\mu}m/day$ compared to control ($319.8{\pm}21.4{\mu}m/day$). The height of overall growth plate was not significantly more compared to the control, but the size of cells in the proliferative zone and hypertrophic zone were. In the immunohistochemistry, BMP-2 and IGF-1 were expressed markedly in the proliferative or hypertrophic zone, respectively. Conclusions: BJIG stimulated the chondrocyte hypertrophy and chondrogenesis in the growth plate and directly increased the longitudinal tibia length of rats.

Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans

  • Lee, Eun Byeol;Kim, Jun Hyeong;Cha, Youn-Soo;Kim, Mina;Song, Seuk Bo;Cha, Dong Seok;Jeon, Hoon;Eun, Jae Soon;Han, Sooncheon;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.582-589
    • /
    • 2015
  • Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.

Radiation Characteristics of Noise Generated by Steady Loading on Rotating Blade (회전익 표면의 정상하중에 의한 소음의 방사특성)

  • Jeon, Wonju;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Loading noise generated by steady aerodynamic force exerted on the rotating body surface is theoretically analyzed and its radiation characteristics is examined as a fundamental research of helicopter rotor noise. For simplicity, the force exerted on each blade is not distributed but concentrated at one point and the noise is evaluated by using Lowson' exact formula with a discussion of the physical meaning of each term in the formula. For a single point force rotating with various angular frequencies, we investigated the radiation characteristics and theoretically explained the physical behavior at near and far-field. By investigating the amplitude of acoustic pressure with various distances, we observed the different decreasing ratio at near- and far-field with the discussion of the effect of acceleration of angular frequency. Finally, the phenomenon that the noise level is reduced everywhere as the number of blade increases is explained with the suggestion of a noise reduction idea, the limitations of this study, and the future research topics.