• Title/Summary/Keyword: Body acceleration

Search Result 423, Processing Time 0.023 seconds

Analysis on the Dynamic Respone of the Hull Structure due to Slamming Impact - By Finite Element Method - (슬래밍 충격을 받는 선체의 동적 응답해석 -유한요소법으로-)

  • Hong, Bong-Ki;Moon, Duk-Hong;Bae, Dong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • In rough seas, actual behaviours of a ship may not be estimated by the linear strip theory, because of Nonlinearities due to the hull shape, bottom slamming and bottom and/or bow-flare slamming. In case of slamming, impulsive hydrodynamic pressure occurs on the fore body surface of the ship, resulting hull vibration called whipping, by which the ship may suffer from serious structural damages and the impact pressure, depends critically on the relative velocity at re-entry. In this paper, the Time history of impact froce at each station, the longitudinal distribution of impact force at critical time, the Time history of acceleration at F.P. and the Time history of Bending moment at midship are illustrated. That is, authors analyzed Dynamic response of container ship to be subjected slamming impact force.

  • PDF

Growth Performance of Transgenic Mud Loach Misgurnus mizolepis Carrying a GH Transgene Driven by Mud Loach C-Type Lectin Regulator

  • Song, Ha-Yeon;Kim, Dong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.43-47
    • /
    • 2012
  • Growth hormone (GH) transgenesis in fish has the potential to improve aquaculture efficiency and capacity. However, many fast-growing transgenic fish have experienced side effects caused by excess GH expression. To overcome this unwanted issue associated with several GH transgenic mud loach Misgurnus mizolepis lines carrying GH construct driven by a strong ${\beta}$-actin regulator ($pml{\beta}$-actGH), we performed an alternative version of GH autotransgenesis using a weaker but more stable regulator, the mud loach lectin promoter. GH transgenesis with a pmlectGH construct consisting of the mud loach GH gene driven by the 2.3-kb lectin promoter exhibited significant growth stimulation. However, the extent of the growth acceleration in pmlectGH transgenics (six times maximum when assessed 2 months post hatching) was much less than that in transgenic individuals carrying the $pml{\beta}$-actGH construct. Additionally, the extraordinary gigantism that was common in $pml{\beta}$-actGH-transgenic mud loaches was diminished in transgenic loaches harboring the pmlectGH construct. Transgenic founders (pmlectGH) successfully transmitted their transgene into the next generation with up to 41% frequency. Growth stimulation also persisted in the transgenic F1 strains, with a seven-fold increase in maximum body weight at 6 months of age.

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

Linear Time Domain Analysis of Radiation Problems (시간영역법에 의한 강제동요시 동유체력 해석)

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

Effect of Lower Limbs Somatosensation on Linear Motion Perception (하지 체성 감각이 선형 운동 지각에 미치는 영향)

  • Yi, Yong-Woo;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.686-693
    • /
    • 2007
  • To perceive body movement, the nervous system uses multi-sensory cues such as vision, vestibular signals, and somatosensation. Among the multi-sensory modality, the previous researchers reported that the lower limb somatosensation plays an important role on maintaining postural balance. In this study, we examined the contribution of somatosensory cues to linear motion perception by measuring the detection threshold of the direction of linear motion with and without lower limb somatosensory constraints. Six healthy male volunteers participated in randomly ordered 33 single sinusoidal acceleration trials with the stimulus at 0.25Hz with peak magnitude ranged from 0 to 8mG. After each stimulus, subjects reported their perceived direction of motion by button press. Results showed that the reduced lower limb somatosensation significantly increased perception threshold. Without constraints, mean threshold was $0.82{\pm}0.23mG$, while it was $1.23{\pm}0.35mG$ with reduced lower limb somatosensation. The results suggest that without visual cues, perception of the movement direction strongly depends on the lower limb somatosensory information.

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

Estimation of the Sensor Location and the Step for Personal Navigation System (개인 항법 시스템을 위한 센서 위치와 보폭 추정 알고리즘)

  • Kim, Tae-Un;Lee, Ho-Won;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2058-2065
    • /
    • 2010
  • This paper presents the sensor location and step estimation algorithm for personal navigation system (PNS). PNS has the disadvantage in that the position of the sensor must be fixed on a human body. Three-axis acceleration sensor is used to solve the disadvantage and to consider the real situation. We simplify the measurement data by using the band pass filter, witch It has the advantage in the detection of characteristic point. Through the detected characteristic points, it is possible to setup the parameter for the pattern detection. Depending on the sensor location, the parameters have the different type of noise covariance. Particularly, when the position of the sensor is changed, the impulse noise shows up. Considering the noise, we apply the recursive least square algorithm using the variable forgetting factors, which can classify the sensor location based on the estimated parameters. We performed the experiment for the verification of the proposed algorithm in the various environments. Through the experimental results, the effectiveness of the proposed method is verified.