• 제목/요약/키워드: Body Temperatures

검색결과 508건 처리시간 0.026초

합금화 용융아연 도금강판의 강성분, 소둔 및 합금화 열처리가 소부경화성에 미치는 영향 (Effects of Steel Chemistry, Annealing and Galvannealing Conditions on Bake Hardenability of Hot-Dip Galvannealed Sheet Steels)

  • 이호종;김종상
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.247-257
    • /
    • 2001
  • In an effort to improve the dent resistance of exterior body panels at a reduced steel thickness, the bake hardenable steels added Ti or Nb with tensile strength of 35Kgf/$\textrm{mm}^2$ were investigated. The bake hardenability increased with the annealing temperature and solute carbon content. Bake hardening of 3 to 5Kgf/$\textrm{mm}^2$ was obtained in steels with a controlled solute carbon concentration range from 6 to 10ppm. The galvannealing temperature and time had little influence on the bake hardenability. The Fe-Zn alloying reaction of 35Kgf/$\textrm{mm}^2$ BH steel was remarkably retarded due to a 0.07%P addition. The optimum galvannealing temperatures of 35Kgf/$\textrm{mm}^2$ BH steel were ranged from 520 to 56$0^{\circ}C$ in view of the Fe content and powdering resistance. The cross-section and planar views of the galvannealed coatings to characterize morphology development were discussed.

  • PDF

SiO$_2$-CaO-Al$_2$O$_3$계 유리 솔더에 의한 알루미나의 접합 현상에 관한 연구 (A Study for Joining of Alumina Soldered by SiO$_2$-CaO-A1$_2$O$_3$ Glasses)

  • 안병국
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.35-41
    • /
    • 2003
  • Sintered alumina ceramics were joined by 2 kinds of SiO$_2$-CaO-A1$_2$O$_3$ glass solders having a similar expansivity as alumina. Wetting of glass/alumina was examined by sessile drop method. The observation of interface and bending strength related to alumina/glass/alumina systems were investigated by means of SEM/EDX and 4-point bending test. the result are summarized as follow: (1) Wetting of glass solders on alumina was good at temperatures higher than 145$0^{\circ}C$. (2) When the joining temperature wan high, diffusion and/or reactions between solder md alumina took place at the interface. These diffusions and reactions occurring at the interface greatly affected the bending strength of joining body. (3) Highest strength corresponding to 80% that of alumina was obtained by the solder of 35SiO$_2$-35CaO-30A1$_2$O$_3$(wt%) glass.

유한체적법과 유한요소법을 이용한 응고과정에서의 열응력해석 (Analysis of Thermal Stresses During Solidification Process Using FVM/FEM Techniques)

  • 이진호;황기영
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1009-1018
    • /
    • 1994
  • An attempt is made to develop a kind of hybrid numerical method for computations of the thermal stresses during a solidification process. In this algorithm, the phase-change heat transfer analysis is perrformed by a finite volume method(FVM) and the thermal stress analysis in a solidifying body by a finite element method(FEM). The temperatures at the grid points calculated in the heat transfer analysis are transferred to those of gauss points in elements by a bi-cubic surface patch technique for the thermal stress analysis. A hyperbolic-sine constitutive law is used to prescribe the inelastic strain rate of material. Results for the unidirectional solidification process of a pure aluminum are compared with those of others and shows good agreement.

보론강 용접 맞춤 판재의 고온 에릭슨 커핑 평가 (Formability Evaluation of Tailor Welded Blanks of Boron Steel Sheets by Erichsen Cupping Test at Elevated Temperature)

  • 김영일;김지훈;김용;이문용;문영훈;김대용
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.568-574
    • /
    • 2011
  • The combination of tailor welded blank (TWB) and hot stamping often offers improved crash-worthiness and reduced mass of stamped parts in the automobile body. To investigate the formability of laser TWB and the reliability of weld line, the present study used 22MnB5 boron steel sheet of the same thickness and used the Erichsen cupping test at elevated temperatures. The effects of laser direction, die temperature, weld line positions and forming speed on formability(the limiting dome height) were studied and the results were compared with the formability of the base material.

급성 열사병으로 폐사한 아프리카 사자의 병리조직학적 소견 (Histopathological Findings of Sudden Death Caused by Acute Heat Stroke in an African Lion(Panthera leo))

  • 김규태;조성환;손화영;류시윤
    • 한국임상수의학회지
    • /
    • 제24권1호
    • /
    • pp.73-75
    • /
    • 2007
  • Heat stroke can lead multi-organ damage with hemorrhage and necrosis in the lungs, heart, liver, kidneys, brain and Ut. Heat stroke occurs when the elevation of core body temperatures induce a failure of thermoregulatory mechanism. A four-year-old male African Lion(Panthera leo) showed clinical signs such as panting, tachycardia, hyperthermia, unconsciousness and mydriasis under He hish humidity and hot weather. Clinical treatment and pouring cool water was unsuccessful. Grossly, congestion of lungs and pleura was observed. Yellowish discoloration was observed in the renal cortex. Microscopically, the coagulative necrosis in kidney and congestion of lungs and spleen were observed. In our knowledge, this case was closely associated with acute heat stroke.

스테인리스강 Spot 용접부의 산화방지에 관한 연구 (A Study on Anti-Oxidation of Stainless Steel Spot Weld)

  • 허동운;이세헌
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.58-62
    • /
    • 2011
  • Stainless steels are alloy steels with a nominal chromium content of at least 11 percent, with other alloy additions. The stainlessness and corrosion resistance of these alloy steels are attributed to the presence of a passive oxide film on the surface. When exposed to conditions like Resistance Spot Welding (RSW) process that remove the passive oxide film, stainless steels are subject to corrosive attack. And exposure to elevated temperatures causes oxidation (discoloration) of areas around indentation in Spot welding. In this paper, deal with the effect of shielding gas (Ar) preventing the corrosion, oxidation of stainless steel. And find the optimal shielding gas flow rate. In addition, suggest effective purging method for direct/indirect spot welding process.

접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구 (Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System)

  • 이주한;서주현;오상준;이진규;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

금형온도와 탈지조건이 사출성형에 의한 알루미나 부품 제조에 미치는 영향 (EFfect of Molding Temperature and Debinding Conditions on Fabrication of Alumina Component by Injection Molding)

  • 임형택;임대순
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.559-566
    • /
    • 1995
  • Alumina powder was coated with stearic acid and then mixed with isotactic polypropylene, atactic polypropylene as binders at 15$0^{\circ}C$ for 2 hours. The mixture was then injection molded at various mold temperatures using injection molding machine to investigate the effect of the molding temperature and debinding parameters on the formation of the defects. The molded specimens were debinded in both air and nitrogen atmospheres. Wicking and solvent methods were also used to enhance debinding efficiency. The specimens were prefired at 120$0^{\circ}C$ and then sintered at 150$0^{\circ}C$ for 3 hours. Various defects were formed at mold temoperature of 3$0^{\circ}C$, 6$0^{\circ}C$ and 10$0^{\circ}C$ and any noticeable defect was not formed at 85$^{\circ}C$. The density of green body increased with mold temperature. Debinding in air atmosphere was more effective than in nitrogen atmosphere. Results also proved that wicking and solvent treatments helped minimize the number of defects.

  • PDF

토끼 관절연골의 마찰 및 윤활 특성 (Friction and Lubrication Behaviors of Rabbit Joint Cartilage)

  • 이권용;이홍철
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.307-311
    • /
    • 2001
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

Reduction of the residual stresses during the additive manufacturing of a thermo-viscoelastic growing cylinder under non-uniform volumetric heating by electric induction

  • Fekry, Montaser
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.259-270
    • /
    • 2022
  • The paper investigates the residual stresses arising in a thermoviscoelastic cylinder as a result of layer-by-layer deposition of material on its lateral surface. Internal stresses are caused by incompatible deformations that accumulate in the assembly as a result of joining parts with different temperatures. For the analysis of internal stresses, an analytical solution to the axisymmetric quasi-static problem of thermoelasticity for a growing cylinder is constructed. It is shown that the distribution of residual stresses depends on the scenario of the surfacing process. In this case, the supply of additional heat to the growing body can significantly reduce the unevenness of temperature fields and reduce the intensity of residual stresses. The most effective is uneven heating, which can be realized, by the action of an alternating current with a tunable excitation frequency. The temperature and residual stresses fields on the growing surface is analyzed numerically for Titanium and Copper materials.