• Title/Summary/Keyword: Body Stiffness

Search Result 496, Processing Time 0.025 seconds

Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile (차체 강성해석을 위한 구조용 접착제 해석모델링 연구)

  • Seo, Seong-Hoon;Joo, Jae-Kap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

Development of Gear Stiffness Module for Multi-Body Dynamic Analysis on Gears (다물체 동역학 해석을 위한 기어 강성 모듈 개발)

  • Song, Jin-Seop;Lee, Geun-Ho;Park, Young-Jun;Bae, Dae-Sung;Lee, Chul-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.130-136
    • /
    • 2012
  • Dynamic as well as static and geometric design parameters such as inertia, tooth profile, backlash and clearance can be directly considered via multi-body dynamic analysis along with contact analysis. However, it is time consuming to use finite elements for the consideration of the tooth flexibility in the multi-body dynamic analysis of gears. A computationally efficient procedure, so called, Gear Stiffness Module, is suggested to resolve this calculation time issue. The characteristics of gear tooth compliance are discussed and rotational stiffness element concept for the Gear Stiffness Module is presented. Transmission error analyses for a spur gear system are carried out to validate the reliability and efficiency of the module. Compared with the finite element model, the Gear Stiffness Module yields considerably similar results and takes only 3% of calculation time.

A Study on Determination of Complex Stiffness of Frame Bush for Ride-Vibration Improvement of Body-on-Frame Vehicle (프레임 차량의 주행진동 저감을 위한 프레임 부시 복소 동강성 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon;Hwang, In-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.194-199
    • /
    • 2005
  • Body-on-frame type vehicle has a set of frame bushes which are installed between body and frame fur vibration Isolation. Such frame bushes are important vibration transmission paths to passenger space. In order to reduce the vibration level of passenger space, therefore, the change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this end, simple finite element vehicle model was constructed and the complex stiffness of frame bushes was set to be design variable. Objective function was defined to reflect passenger ride comfort and genetic algorithm and sub-structure synthesis were applied for minimization of the objective function.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.129-137
    • /
    • 2002
  • Elastomers, which are used engine mounts and body mount rubbers, are traditionally designed for NVH use in vehicles, and for vibration isolation in specific frequency range. According to the measurement of the characteristics of the SUV's engine mounts, there are variability in same engine mount properties. Static and dynamic stiffness of the SUV's engine mounts are changed due to the driving miles accumulated. The pre-load of body mount rubbers are changed due to the empty vehicle weight, passenger's weight and gross vehicle weight. And the dynamic stiffness of body mount rubbers are changed very hard above 150Hz frequency range.

A Study on The Structure and Safety of Aluminum Intensive Vehicle (알루미늄 초경량 차체의 구조강성 및 안전도향상에 관한 연구)

  • Kim, Jin-Kook;Kim, Sang-Bum;Kim, Heon-Young;Heo, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.363-369
    • /
    • 2000
  • Due to environmental problem for reduction in fuel consumption, vehicle emission and etc., many automotive makers are trying to reduce the weight of the vehicle. The most effective way to reduce the weight of vehicle is to use lighter materials, aluminum, plastics. Aluminum Space Frame has many advantages in weight reduction, body stiffness, ease of model change and so on. So, most of automotive manufacturers are attempting to develope Aluminum Space Frame body. For these reasons, we have developed Aluminum Intensive Vehicle based on steel monocoque body with Hyundai Motor Company. We achieved about 30% weight reduction, the stiffness of our model was higher than that of conventional steel monocoque body. In this paper, with optimization using FEM analysis, we could get more weight reduction and body stiffness increase. In the long run, we analyzed by means of simulation using PAM-CRASH to evaluate crush and crash characteristic of Aluminum Intensive Vehicle in comparison to steel monocoque automotive.

  • PDF

A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel (TWB 판넬의 기계적특성 평가에 관한 연구)

  • Chun, Chang-Hwan;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

Analysis of Ride Comfort for an Automobile with flexible Vehicle Body (차체의 유연성을 고려한 차량 승차감 해석)

  • Kim Junghoon;Choi Kwangsung;Park Sungyong;Lee Jangmoo;Kang Sangwook;Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.

The Derivation of Simplified Vehicle Body Stiffness Equation Using Collision Analysis (자동차 충돌해석에 의한 단순화된 차체 강성 방정식의 유도)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.177-185
    • /
    • 2000
  • The deformation characteristics is one of the major factors to resume the crash configuration in collision accident reconstruction. Crash analysis are carried out using finite element method and body stiffness equations representing force-deformation relationship are derived, Two different crash conditions : 1) frontal barrier impact 2) frontal impact between cars are given for the derivation of the equations. The stiffness coefficient of equation by method 2) is larger than that by method. 1). Crash analysis between two vehicles is accomplished with three crash angles and three velocities for each angle condition. The deformations are measured for six selected points and deformation energies are calculated using the derived equations. Equation by method 2) results in better estimation of deformation energy than that by method 1) for all crush configurations. The estimated energies can be utilized as one of indices to identify the type of the collision accident result.

  • PDF