• Title/Summary/Keyword: Body Signal

Search Result 865, Processing Time 0.028 seconds

An Analysis of Correlation between Voice vowels and Human body (음성모음과 신체의 상관관계 분석)

  • Choi, In-Ho;Jeon, Jong-Weon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.375-383
    • /
    • 2010
  • In this paper, the correlation between voice vowels and human body is analysed for the voice therapy and diagnosis. Using vowels('a', 'e', 'i', 'o', 'u'), the vibration signals in head, chest and belly is measured with the voice signal. As the result, it is shown that body characteristics can be checked from some vowels, and the correlation coefficient of body vibration signal and BMI(body mass index) is computed. From the result, using voice signal and body vibrations, the body diagnosis model is proposed.

A Development of the Method Measuring from Signal Propagation Direction using Passive Electrical Properties in Human Body (인체에 있어서 수동적 전기특성을 이용한 신호전달방향 계측법 개발)

  • Park Hyung-Jun;Yoon Jae-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.8
    • /
    • pp.378-385
    • /
    • 2006
  • In this study, a method measuring signal propagation direction in human body was developed by using passive electrical properties of the body. The measured method of the signal propagation direction is to apply basic characteristic of electricity to the human body; when a voltage is set to a conducted medium, according to the polarity of the conducted voltage, the voltage rising or drop is generated. And using this concept, it is able to estimate the direction of electrical signal on the human body. The passive electrical properties were measured and the direction of signal propagation was estimated on the followings; between the flexor carpi radialis, between arms, between legs, between an arm and a leg, between the cervical vertebra and the upper limb, between the sacral vertebra and the leg, between the cervical vertebra and the tendon of triceps brachii, and between the sacral vertebra and the calcaneal tendon. As the result of experiments, the passive electrical properties were increased from l[Hz] to 50[kHz] of the inputted frequencies and showed at saturating tendency after that. And also, the estimated signal propagation directions using the developed method in this study agreed with the expected directions exactly at each part of the human body.

Analysis of Human Body Channel Based on Impulse Response Signals (임펄스 응답 신호를 이용한 인체 채널 분석)

  • Kang, Taewook;Lee, Jae-Jin;Oh, Wangrok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2022
  • This study presents an analysis of the human body channel as an electric signal path using body impulse response (BIR). The human body communications (HBC) has recently emerged as an effective signal transmission method to create wireless body area networks (WBAN). We provide body channel characteristics based on measured BIR in a proper experimental environment for the HBC using capacitive coupling with a customized channel sounding device, which can be applied as a guideline for the HBC system design. The frequency response of the BIR, extracted by a customized signal processing for the measure signals, shows the channel path loss (CPS) between 0 MHz and 100 MHz with an average CPS of approximately 46.8 dB. In addition, the relative noise power distributions can provide estimations on the signal to noise ratio at the HBC receiver in terms of capacitor and resistor values in the measured frequency band and the frequency band lower than 3 MHz considering the baseband signal detection.

Physical Principles of Magnetic Resonance Imaging in Animal (동물에서 자기 공명 영상 진단의 물리적 원리)

  • 김종규
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 1999
  • Magnetic resonance imaging (MRI) is an imaging technique used to produce high quality images of the inside of the animal body. MRI is based on the principles of nuclear magnetic resonance (NMR) and started out as a tomographic imaging technique, that is it produced an image of the NMR signal in a thin slice through the animal body. The animal body is primarily fat and water, Fat and water have many hydrogen atoms. Hydrogen nuclei have an NMR signal. For these reasons magnetic resonance imaging primarily images the NMR signal from the hydrogen nuclei. Hydrogen protons, within the body align with the magnetic field. By applying short radio frequency (RF) pulses to a specific anatomical slice, the protons in the slice absorb energy at this resonant frequency causing them to spin perpendicular to the magnetic field. As the protons relax back into alignment with the magnetic field, a signal is received by an RF coil that acts as an antennae. This signal is processed by a computer to produce diagnostic images of the anatomical area of interest.

  • PDF

Analysis of Absorption Loss by a Human Body in On-to-Off Body Communication at 2.45 GHz

  • Jeon, Jaesung;Lee, Sangwoo;Choi, Jaehoon;Kim, Sunwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper investigates the effect of absorption loss by a human body to the received signal strength with respect to on-body transmitting antenna positions in on-to-off wireless body area networks. This investigation is based on measurement results obtained from experiments performed on human bodies (male and female) using planar inverted-F antennas in an anechoic chamber. The total absorption loss by the human body is also presented through the SEMCAD-X simulations. Our investigation showed that the received signal strength becomes lower when the transmitting antenna is mounted at a specific position where more absorption loss is experienced. The statistical analyses of on-to-off body channel characteristics based on the measurement results are presented.

The manufacture of pre-amplifier for measuring the electrical signal of human body (인체 전기 신호 계측을 위한 pre-amplifier의 제작)

  • 박종환;천우영;박형준;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.179-182
    • /
    • 1997
  • In this study, the pre-amplifiers were manufac-tured, which correspinds with the properties of signal source, For measuring the EMG, EEG, ECG and EOG's signal, which are generated at human body, the pre-amplifiers were manufactured in this studywhich was corresponding with the propertiies of dach signal source. So as to do, the bandwidth of filters and the amplitude of amplifiers were adaptively adjusted, according to signal source. Then, the usefulness was represented by showing the measured examples.

  • PDF

Implementation of the F-B function comparison on the body movement

  • Kim, Jeong-Lae;Hwang, Kyu-Sung;Nam, Yong-Seok
    • International journal of advanced smart convergence
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • To compare body signal, was designed the F-B function system on the body movement for the comfortable state. To detect subject of the normal state, was decided on the base of physical signal in the body movement. There are to detect the condition of Vision, Vestibular, Somatosensory and CNS. Vision condition was verified a variation of greater average (Vi-${\Phi}_{AVG-AVG}$) was presented slightly greater at $17.424{\pm}9.65$ unit. Vestibular condition was identified a variation of slightly greater average (Ve-${\Phi}_{AVG-AVG}$) was presented at $9.068{\pm}1.478$ unit. Somatosensory condition was checked a variation of smaller average (So-${\Phi}_{AVG-AVG}$) was presented slightly smaller at $2.79{\pm}0.419$ unit. CNS condition was confirmed a variation of diminutive smaller average (C-${\Phi}_{AVG-AVG}$) was presented slightly larger at $0.557{\pm}0.153$ unit. As the model depends on the F-B function system of body movement, average values of these perturbation were computed F-B function comparison data. These systems will be to infer a data algorithm and a data signal processing system for the evaluation of the stability.

Study of Channel Model Characterization of Human Internal Organ in On-Body System at 2.45 GHz (2.45 GHz On-Body 시스템에서 인체 내부 장기에 따른 채널 모델 특징 연구)

  • Jeon, Jaesung;Choi, Jaehoon;Kim, Sunwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, WBAN(Wireless Body Area Network) On-body system using the surface-oriented antenna about the impact of human internal organs were analyzed through experiments. The received signal strength is measured for effect of human using the human model and the phantom of torso. Experiments are performed in anechoic chamber without moving and measured by Vector Network Analyzer. This paper confirms the effect of human body by comparing the human model and the phantom of torso. And also know the human internal organs effect on the antennas loss of received signal strength by measured data.

Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack (헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석)

  • Lee, Hyeon-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.

Body Vibration Compensated Laser Doppler Vibrometer using Adaptive Filtering (적응필터링 기법을 사용하여 자체진동을 보상하는 레이저 도플러 진동측정계)

  • 최성욱;조영균;김호성;장태규;강민식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.516-520
    • /
    • 2003
  • A novel dual beam heterodyne Laser Doppler Vibrometer (LDV) in conjunction with FM demodulators, which utilizes a residual beam to eliminate the perturbationdue due to the vibrometer body vibration without any external reference surface, has been developed. Residual laser beam from the beam splitter is used to pick up the vibration of damper, which is mounted in the vibrometer, and combined with reference beam at the photodetector. The output signal of this detector and main signal are processed to extract the object vibration, using a least mean square adaptive algorithm. It is shown experimentally that the body vibration of 1-5 Hz can be effectively removed from the measured signal using DSP technology to extract unperturbed 100 Hz original signal.