• Title/Summary/Keyword: Body Shape Measurement

Search Result 267, Processing Time 0.036 seconds

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Implementation and evaluation of the sensor assessing pressure and photoplethysmogram (압력맥파 및 광전용적맥파 검출용 일체형 센서의 구현 및 평가)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Choi, Byeong-Cheol;Jeon, Gye-Rok;Ham, Ki-Young;Suh, Duk-Joon;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Pulse sensors generally have characteristics that cause a analytical error by the interference of signals according to tiny motion of body and pressure applied to skin. To resolve this problem, we implemented the sensor that is capable of simultaneously measuring pressure and PPG(photoplethymogram) in a state attached to skin. Pressure and PPG was recorded at the finger and wrist respectively to evaluate the usefulness of the implemented sensor. Then, it was observed that the shape of PPG from sensor changed by pressure pushing down skin. Results of this study suggested that it is possible to monitor a degree of skin pressurization and to guarantee a reliable measurement by simultaneously measuring pressure and PPG using implemented integrated sensor when measuring PPG on the wrist or the finger.

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • Eslami, Hossein;Tahriri, Mohammadreza;Moztarzadeh, Fathollah;Bader, Rizwan;Tayebi, Lobat
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.597-607
    • /
    • 2018
  • In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

Measurement of Melting Temperatures of $UO_2,\;(U,Gd)O_2\;and\;(U,Er)O_2$ Fuels

  • Kang Ki Won;Yang Jae Ho;Kim Keon Sik;Kim Jong Hun;Lee Young Woo;Song Kun Woo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.104-111
    • /
    • 2004
  • The melting temperatures of $UO_2,\;UO_2-6wt\%Gd_{2}O_3,\;UO_2-12wt\%Gd_{2}O_3,\;UO_2-2wt\%Er_{2}O_3,\;and\;UO_2-4wt\%Er_{2}O_3$ fuels were measured. Fuel materials were loaded in a tungsten capsule of which shape met the black body condition. The melting temperature was measured by the thermal arrest method during heating of the capsule in an induction furnace. The measured melting temperature of $UO_2$ fuel was $2815{\pm}20^{\circ}C$. The solidus and liquidus temperatures of $UO_2-Gd_{2}O_3\;and\;UO_2-Er_{2}O_3$ had also been measured, and it was observed that the solidus temperatures of them were lower than the liquidus temperature by $15{\sim}25^{\circ}C$. Measured melting temperatures of $UO_2,\;UO_2-Gd_{2}O_3\;and\;UO_2-Er_{2}O_3$ fuels were as follows:

Development of the Dress Forms for Pre-School Children's Clothing Construction (유아복 구성을 위한 인대 제작 방안에 관한 연구)

  • 박찬미;서미아
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.2
    • /
    • pp.335-342
    • /
    • 1999
  • This study is aimed at providing useful data which can be utilized for the design of their dress forms and enhancing the fitness of their apparels. To this end 330 pre-school children living in the capital area and aged from 4 to 6 were sampled to be subject to the measurement of their somatotypes. The results of this study can be summarized as follows ; 1 By the analysis of overlapped cross section diagram and silhouette diagram of each somatotype both had a common shape of lean-backed upper troso. 2. The type 1 showed less dimensions in most scales than type 2 while their shoulder were less developed. The type 2 showing more development in each element. 3. As a result of comparing the dress forms designed in reference with classified somatotypes and the commercial ones it was found that the former ones had the upper body part slanted slightly backwards and the belly part extruded forwards while the latter had a straight posture with large shoulder parts. After all the commercial dress forms were found not to reflect the actual somatotypes of Pre-School children's.

  • PDF

Measurement of Drape Appearance Similarity between Real and Digital Stretch Fabric

  • Kim, Hyeon-Ah;Lim, Ho-Sun
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.645-654
    • /
    • 2021
  • This study aimed to visually compare the implementation of digital virtual fabrics for stretch fabrics mainly used in clothing that closely touch the body, using CLO. A digital fabric was used in CLO after measuring the weight, thickness, bending, and tensile force of five adhering clothing fabrics using a CLO fabric kit. The visual similarity of draftability was compared by measuring the area of the bending angle and the shape of the wrinkles of the real and digital fabric. A comparison of the bending angles showed that Fabric A was -0.75° and Fabric D was -2.5°, showing slightly lower drape properties than the real fabric. Meanwhile, Fabric B was 2.75°, Fabric C was 2.13°, and Fabric E was 1.375°, showing slightly higher drape properties in the vertical direction than the real fabric. Comparing the widths of the drape shapes, Fabric A was 0.77%, Fabric B was 1.27%, Fabric C was 0.06%, and Fabric E was 1.48%, which showed a slight difference. Fabric D showed a difference of 3.17% and was implemented where the digital fabric spread a little wider. As a result, the stretch fabric was visually expressed similarly to the real fabric as a whole in CLO. For 3D virtual clothing technology to be used widely in the close clothing industry in the future, more research on real clothing is needed.

Characteristics of Ease in Men's Custom-fit Business Jackets (남성 맞춤 정장 재킷의 여유량을 결정짓는 요인들에 관한 연구)

  • Kang Yeosun;Choi Hei-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.12 s.138
    • /
    • pp.1605-1616
    • /
    • 2004
  • The purpose of this study was to investigate the commonly accepted ease for a custom-fit business jacket, which provides all customers with the optimum fit regarding their individual body sizes, shapes as well as their personal preference, and also to characterize the factors which affects the ease amount, thereby, supply the reference data to manufacturers of the apparel industry. This study consisted of anthropometric measurements as well as sensory evaluations, and analysed ease amount by body sizes, ages, fit satisfaction, self-perception of body, and the prefered fit levels. There were 272 subjects for anthropometric measurement of which 128 subjects were applied for ease analysis and sensory evaluation. The subjects were males of 20 to 65 years old. The ease at chest was the most sensitive to body sizes and shapes, while waist and hip were easily modified to accommodate the silhouette of the jacket. The main dimensions affecting individual perceptions of fit and ease were the characteristics of body shape, in particular, girth, followed by age. Customers paided most attention to the shoulder fit while customers who preferred a more fitted line showed more concern with ease for jacket fit. It was clearly observable in case of waist fit preference. In addition, the preferred fit at chest, waist and hip would be changed by the perception of ons's hip size.

MARGINAL FITNESS OF PORCELAIN-FUSED-TO-METAL CROWN ACCORDING TO MATERIAL AND TECHNIQUE

  • Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.120-132
    • /
    • 1998
  • This stusy was to investigate the marginal fitness of porcelain-fused-to- metal crown after succesive firing cycle. Main variables were the degree of marginal curvature of labiocervical margin and the type of alloy. The exaggerated marginal curvature(EMC) was created by additional reduction at the faciocervical wall of the normallized marginal curvature (NMC)-typed ivorine tooth by using milling machine. The difference in the shape was the mid facial margin was placed 2mm apical to cemento- enamel junction in labial surface. Three types of alloy were high noble, noble, and base metal alloy. Test specimens were divided into 8 groups and each group had 8 specimens. Sixty four ceramometal crowns were made totally. Measurement stages were following degassing, opaquing. body porcelain firing, and glazing, and measuring sites were 4. (midmesial, midfacial, middistal, and midlingual). Digital, travelling measuring microscope (0.5 um precision, Olympus. Japan) was used under ${\times}250$ magnification. Within the limitation of this investigation, it was concluded as belows: 1. The pattern of marginal distortion was varied. Degassing stage was not a specific, causative stage that induce most of total marginal distortion during whole procedure fabricating a ceramometal crown. Body firing stage induced discrepancy relatively more than other firing stages. 2. The specimens that were Ni-based alloy and had EMC were distorted persistently following successive fabricating procedures. But marginal openings were decreased after glazing. 3. The release of metal grinding-induced stress was presumed as a cause that induce marginal distortion. 4. The amount of discrepancies of the labial and lingual margins were greater than that of the mesial and distal margin in the specimen that had EMC. 5. Silver-plated die was not enough to resist abrasion during repeated seating of metal copings on the die-holding device.

  • PDF

A Comparative Study on the Conductivity and Physical Properties of Conductive Materials for Heart Rate Monitoring (심박 모니터링을 위한 전도성 소재의 전도성 및 물성 비교 연구)

  • Kim, Jimin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.22 no.4
    • /
    • pp.118-129
    • /
    • 2018
  • The purpose of this study is to develop ECG electrode materials for the heart rate monitoring smart band, a smart device used for ECG and heart rate measurement. The purpose of the evaluation is to assess properties and conductivity of electrodes of the existing heart rate monitoring smart band, and to determine suitability through a representative conductive sample. Because level of thickness does not differ significantly from value of conductive specimen from thickness of the smart band, it can be used as a conductive electrode. Surface conductivity of conductive samples and smart bands, is expected to be available as electrodes except for conductive film. Also, since the knit have conductivity only in the metal processing layer, it is necessary to use electrodes on the part of the metal processing layer that is conductive when applying the knit. Tensile strength and electrical conductivity of the tensile were generally revealed to have a tendency. Thickness of the specimen that can be used as an electrode for the smart band is suitable for all samples, electrical resistance, conductive woven, conductive knit, and conductive cord. In the case of conductive cord, however, the electrode attached to the human body will not conform to the flat shape of the electrode attached to the human body. Therefore, the conductive woven and the conductive knit will be available as an electrode.

An Ergonomic Study of the Sleeve Pattern According to Arm Movement -on Expansion and Contraction of the Skin Surface of the Arm- (팔의 동작에 따른 소매 원형의 인간공학적 연구 -팔의 피부면 신축을 중심으로-)

  • 함옥상
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.3
    • /
    • pp.21-32
    • /
    • 1981
  • Clothing must have the individual beauty and the function that one can do one's body movement freely. therefore, from the human engineering view point, the exact measurement of the human body and the analysis of it's results must be applied to clothing because the arm works most. In this study, the skin surface of arm was investigated by shell made of Alginate of each movement. And by sometic method the rate of expansion and contraction of each section, inter-relation among the bust girth, axillary arm girth and scye girth and between the shoulder length right and the under axilla waist length were calculate4d. With these results, cap height, breadth of a sleeve and arm hole girth of existing sleeve pattern have been compared and analysed. The results are as follows; 1) According to the developmental figures of shell, the whole area change was small but that of shape was remarkable in M 4, 9, 13. The change of the Block 1 was particular. 2) Over arm length was contracted in all movements except M6 and under arm length expanded. The changes of sections a, b, c are large, while those of sections d, e are small. 3) In terms of latitudes, change of fore-arm region was small. The rate of scye girth varied from 14.3% of M13 to-5.6% of M2. The breadth of a sleeve expanded in all movements, and especially the front region expanded more than the back. 4) The relation between the shoulder length right and under axilla waist length, in all occasions, was contracted mutually, and one contracted, the other expanded. Therefore, in clothing construction when we consider the function of the arm it is better to widen the arm hole and the breadth of a sleeve at the same time than no widen the shoulder length by lowering the upper part of the upper side seam line.

  • PDF