• Title/Summary/Keyword: Body Pressure Sensor

Search Result 121, Processing Time 0.031 seconds

Experimental Study on Flow Noise Generated by Axisymmetric Boundary Layer ( I ) - Wall Pressure Fluctuations on Axisymmetric Noses and on a Cylinder in an Axial Flow - (축대칭 물체의 경계층 유동소음에 대한 실험적 연구 ( I ) - 축대칭 물체 전두부 및 실린더 벽면 섭동압력 -)

  • Lee, Seung-Bae;Kim, Hooi-Joong;Kwon, O-Sup;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.945-956
    • /
    • 2000
  • The axisymmetric bodies considered in this study have hemispherical and ellipsoidal noses. The near-field pressure fluctuations over each nose model at $Re_D=2.43{\times}10^5$ were investigated in the laminar separation region and developing turbulent boundary layers using a 1/8' pin-holed microphone sensor. The wall pressure fluctuations were also measured in an axisymmetric boundary layer on a cylinder parallel to mean flow at a momentum thickness Reynolds number of 850 and a boundary layer thickness to cylinder radius ratio of 1.88.

An Experimental Study on the Combustion Characteristics with Hydrogen Enrichment in a Dump Combustor (수소 혼합에 따른 덤프 연소기내의 연소 특성에 관한 실험적 연구)

  • Kim, Dae-Hee;Hong, Jung-Goo;Shin, Hyun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2977-2983
    • /
    • 2008
  • The combustion characteristics of a partially premixed flame in a dump combustor were studied to determine the effects of hydrogen enrichment in propane. Bluff-body was used for flame stabilization. Fuel mixtures containing a hydrogen mole fraction ranging from 0.1 to 0.5 were burnt at ambient pressure within a quartz chamber. Tests were carried out keeping the total reactant flow rate by adjusting the fuel and air flow rates. The fluctuations of pressure were measured by piezoelectric pressure sensor. The instantaneous flame structure and OH chemiluminescence images were described by High-speed Intensified Charged Coupled Device (HICCD) camera and Intensified Charged Coupled Device (ICCD) camera. The present results show that hydrogen enrichment in fuel changed the location of primary reaction zone from inner recirculation zone to turbulent shear layer and pressure signal. The reason is that chemical aspects take precedence over flow aspects in the hydrogen-enriched flame.

  • PDF

Research of Body Pressure Distribution Change with the Use of BackJoy and Satisfaction of Human Sensibility

  • Kim, Kwangoh;Yoon, Jungmin;Ahn, Sungyong;Kim, Daseuran;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.59-68
    • /
    • 2014
  • Objective: The aim of this study is to investigate the effect of BackJoy on how it effectively reduces the physical load generated in a posture in which the user sits, increases user's comfort and satisfaction, and maintains the correct posture. Background: Because of development of science and economic development, most office workers and students spend about 75% of their working time in chairs. However most of them have a poor posture. Method: This experiment conducted measurement using a pressure mat and surveyed to evaluate fatigue level, satisfaction and comfort of sit. The study is experimented 20 male and 14 female participants. The participants carried out four different types of tasks and each task took 20 minutes long. Results: In the case of experiment results before and after the use of BackJoy, average pressure, contact area and pressure per unit area appear to prove that using BackJoy is more effective. Conclusion: Through this study, the BackJoy's effects for the maintenance of good posture and loads that occur in the body are reduced. In the future study, there are some researches needed for various verifications using an EMG sensor that shows loads of vertebrae and we need to analyze each group of the participants by dividing them. Application: The evaluation method used in this study can be applied to evaluating ergonomic chairs.

Implementation of Segway Using Pressure Sensors (압력센서를 이용한 세그웨이 개발)

  • Jo, Sung-Chan;Kang, Su-Min;Huh, Kyung-Moo;Joo, Young-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.285-290
    • /
    • 2013
  • As well as the advanced development of modern society, and the environmental problems caused by the use of fossil fuels is emerging. So do not reap the performance level of the car to be able to replace existing fossil fuel and low-emission energy and technology development are continually strives. Therefore, this study aims to present the direction of the new interface 21st century Mobile Auto Electric Segway technology in the field of security and disadvantages based. The Segway is a problem because the control itself skewed by certain slope where the slope in the wrong adjustment tipping. In this study, the year saw the introduction of two pressure sensors(Load cell) used to solve these drawbacks, according to the ratio of the weight control methods. In addition, the ramps operate in a straightforward, using an acceleration sensor and a gyro sensor in order to compensate for the slope value in free control method to study looked. Measured by calculating the value of the occupant's weight and according to the inclination of the pressure sensor pressure sensing experiment results this year, we can see that the control variable for the change in body weight is greater than the inclination. Segway is also easy to control, and the stability of the ramps, etc. As a result, created using a pressure sensor.

Evaluation of u-Healthcare Demonstration Project in Sungnam (성남 u-헬스 시범사업의 평가)

  • Lee, Won-Jae;Kim, Hye-Jung
    • Journal of Information Technology Services
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • To test if the developed ubiquitous health care devices working well and vital information could be collected and monitored systematically through internet and to test if the devices and services could be used further. Kyungwon University, KT Co., Gil Medical Center, LIG Nex1 Co., and Sujeong Health Center conducted an ubiquitous health care demonstration project in Sujeong-Gu, Sungnam, Korea from Mar. 5 to May 16. We developed and applied several medical devices to monitor health of the elderly in their houses through internet. The devices were sphygmomanometer, glucometer, body fat scale, Health Pad, and activity sensor. We distributed the devices to 20 recipients of home care and 7 diabetes patients. After received the devices and were explained how to use them, they used the devices in their houses. The vital signs of the residents were monitored through internet. A nurse monitored and consulted their vital signs in the monitoring center in Kyungwon University during the demonstration period. The consultant called them and consulted on their blood pressure, blood sugar level, and body fat after a few seconds they used the devices as well as provision of recommended contents such as diets and activities through Health Pad. To investigate cognition and satisfaction of the participants for the devices, we surveyed the participants at the end of the demonstration period. For the change in blood pressure, blood sugar level, and activities, we conducted statistical test. After the demonstration period. cognition and satisfaction for the devices and change in blood pressure, blood sugar level, and activities were evaluated. Most of the participants were acknowledged how to use the device and satisfied with the use of the devices. The internet monitoring and services are considered to be promising because most of the participants were satisfied especially because somebody was monitoring their health status. However some weaknesses such as short battery life of the activity sensor, lack of connection of consultations with hospitals, and low understanding on usage of some of the devices need to be complemented.

Investigation of the body distribution of load pressure and virtual wear design according to the corset type harness (코르셋 타입 하네스의 신체 하중압력 분포 측정 및 가상착의 적용)

  • Kwon, MiYeon;Choi, Sola;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • Harnesses are used in a variety of industries, such as rescue operations, medicine, and entertainment. However, conventional harnesses have problems as they are uncomfortable to wear and causes continuous pain. Therefore, in this study, the load and pressure applied to the body in the flying state when using a conventional harness were measured in real time and the distribution change was observed. Load and pressure were measured using a modified corset harness, a pressure sensor, and a human mannequin to measure the maximum and average pressure on the waist. As a result, it was confirmed that the load concentrated on the waist in the flying state was 104 N, and the pressure was applied to the left and right sides was 800 kPa or greater. The pressure distribution showed a pressure of 3-45 kPa in 73% in all measurable pressures. The results of the load and pressure distribution are presented as basic data for improving the wearability and reducing the discomfort of harnesses in the future, aid in the development of a harnesses that can minimize discomfort for various activities, and increase the concentration on experiential activities. In addition, using the CLO 3D program, which is a 3D virtual wearing system, a harness was put on a virtual model, and the compression level was checked and compared with the actual pressure distribution. As a result of comparing the measured pressure values in the flying state with the clothing pressure wearing the harness in the CLO 3D program, the total pressure value was found to be about 68% of the actual measured value. This helps develop a harness that can minimize discomfort during activities by predicting the load and pressure on the body by first applying new designs to a virtual wearing system during development. These new harness patterns can solve the problems of conventional harnesses.

The Unconstrained Sleep Monitoring System for Home Healthcare using Air Mattress and Digital Signal Processing (공기 매트리스와 디지털 신호처리를 이용한 홈헬스케어용 무구속 수면 모니터링 시스템)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.493-496
    • /
    • 2005
  • For home healthcare, the unconstrained measurement of physiological signal is highly required to avoid the inconvenience of users. The recording and analysis of the fundamental parameters during sleep like respiration and heart beat provide valuable information on his/her healthcare. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The balancing tube between two air cells is used to increase the robustness against postural changes during the measurement period. The meaningful frequency range could be selected by the pneumatic filter with balancing tube. ECG (Electrocardiography) and respiration sensor (plethysmography) were measured for comparison with the signal from air mattress. To extract the heart beat information from air pressure sensor, digital signal processing technique was used. The accuracy for breathing interval and heart beat monitoring was acceptable. It shows the potentials of air mattress sensor system to be the unconstrained home sleep monitoring system.

  • PDF

Development of the foot track system for the evaluation of foot plantar surface pressure distribution (족저 압력분포 평가를 위한 Foot Track System의 개발)

  • 이기훈;정민근;김태복
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.23-33
    • /
    • 1992
  • The distribution of the pressure between the sole of a feet and a supporting surface can reveal the information about the structure and fonction of the foot and the posural control of the whole body. In particular, the measurement of the vertical contact forces between the plantar surface of the foot and the shoe insole is of great importance to reveal the loading distributio patterns incurred from a particular shoe midsole design. In order to investigate the plantar surface pressure distribution, an insole-type sensor with a piezoelectric material is developed and tested. The present paper describes a new method to completely reduce both the shear force and pyroelectric effects that are normally caused from piezoelectric materials.

  • PDF

Recognizing Method of Foot Characteristics by Pressure Image Analysis

  • Hwang, Yong-Bae;Yoon, Sang-Cheun;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.55.1-55
    • /
    • 2001
  • Foot, as a supporting base of human body, Is very important and has essential role during standing and walking those are our everyday physical movements. So lots of researches about the foot have been done for clinical purpose and ergonomic needs. Most of those researches are related to pressure distribution between the soles of the feet. Usually force plate or pressure sensor is used to obtain proper characteristic data from foot. But these expensive devices are not easy to attach to the sole of the subjects and it is unnatural for the subject to move with these devices. As one of method of measuring foot, gridded sole image is used. But the obtained image is very hard to be recognizable because of the image is composed with the ...

  • PDF

Influence of Negative-Pressure Wound Therapy on Tissue Oxygenation of the Foot

  • Shon, Yoo-Seok;Lee, Ye-Na;Jeong, Seong-Ho;Dhong, Eun-Sang;Han, Seung-Kyu
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.668-672
    • /
    • 2014
  • Background Negative-pressure wound therapy (NPWT) is believed to accelerate wound healing by altering wound microvascular blood flow. Although many studies using laser Doppler have found that NPWT increases perfusion, recent work using other modalities has demonstrated that perfusion is reduced. The purpose of this study was to investigate the influence of NPWT on tissue oxygenation of the foot, which is the most sensitive region of the body to ischemia. Methods Transcutaneous partial pressure of oxygen ($TcpO_2$) was used to determine perfusion beneath NPWT dressings of 10 healthy feet. The sensor was placed on the tarso-metatarsal area of the foot and the NPWT dressing was placed above the sensor. $TcpO_2$ was measured until it reached a steady plateau state. The readings obtained at the suction-on period were compared with the initial baseline (pre-suction) readings. Results $TcpO_2$ decreased significantly immediately after applying NPWT, but gradually increased over time until reaching a steady plateau state. The decrease in $TcpO_2$ from baseline to the steady state was 2.9 to 13.9 mm Hg (mean, $9.3{\pm}3.6$ mm Hg; $13.5{\pm}5.8%$; P<0.01). All feet reached a plateau within 20 to 65 minutes after suction was applied. Conclusions NPWT significantly decrease tissue oxygenation of the foot by 2.9 to 13.9 mm Hg. NPWT should be used with caution on feet that do not have adequate tissue oxygenation for wound healing.