• 제목/요약/키워드: Body Movement

검색결과 1,529건 처리시간 0.029초

인체 동작 분석기의 개발 (Development of a Human Motion Analyzer)

  • 김민기;김성호
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.217-222
    • /
    • 1995
  • We propose some applications of image processing techniques to extract quantitative measurements by using a camera system developed in Korea university and Catholic Medical School. From now on the system will be called as KCMOTION. The purpose of this study is to provide basic kinematic and kinetic data for the analysis of human movements and to find the clinical usefulness and reliability of the proposed motion analysis system. Two tests, sit-to-stand (STS) movements and pendulum test, are conducted by the system. The aims of the tests are to identify variability and reliability of KCMOTION to give some quantitative comparisons to the other systems. The result of STS movement are compared to the LOCUS IIID motion analyzer by the ratio of maximum flexion movement per body weight to the actual maximum flexion extension torque per body weight. That result in 29 % and 33 % for hip and knee joint, respectively in KCMOTION and 27 % and 30 % in LOCUS IIID System. The results of the pendulum movements are compared to that of using Cybex and Electrogoniometer with relaxation index, amplitude ratio, swing number and swing time. The results of relaxation index and amplitude ratio of the KCMOTION are between those of the Cybex and Electrogoniometer. We also observed that the KCMOTION detect more natural movement, from the results of swing number and time.

  • PDF

지능형 뱀 로봇에 관한 연구 (Research about Intelligent Snake Robot)

  • 김성주;김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.70-75
    • /
    • 2003
  • 기존 이동로봇의 활발한 연구와 더불어 다양한 형태의 이동로봇이 등장하였다. 이에 본 논문에서는 8축으로 구성된, 총 16 Degree Of Freedom을 가지는 다 관절 뱀 로봇을 제작하였다. 뱀 로봇은 지면과의 진행 마찰력을 고려하여 무동력 바퀴를 사용하였다. 또한 PC Cam과 초음파 센서를 사용하여 각 관절이 움직일 수 있는 Joint Angle을 나타내기 위하여 Target의 색상과 거리를 입력으로 하였다. 뱀 로봇은 머리부분, 몸통 그리고 꼬리부분으로 나뉘어 진행하는 방식을 가지며 PC Cam 을 통해 화면에 보여지는 움직이는 특정 목표물에 대하여 진행을 하며, 진행 중 움직이거나 고정되어있는 Obstacle이 포착될 경우 충돌회피를 통하여 Target을 추종하는 방식을 실험적으로 보이고자 한다.

스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구 (The Differences in the Ski Carving Turn Motion According to Level of Exper tise)

  • 은선덕;현무성
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

팔 동작에 따른 소매유무별 블라우스 착의형상의 3차원적 파악 (A Study on the Dressed Shapes of the Blouse with Short Sleeves and Sleeveless according to Arm Movement Using 3-D Scanner)

  • 이명희
    • 한국의류산업학회지
    • /
    • 제8권2호
    • /
    • pp.209-213
    • /
    • 2006
  • The 3-D information is useful as basic data which has been utilized in the development of simulating technology as fit-simulation. The experiment is designed to take some useful data on the variant shapes which contribute in simulating the adaptability of the clothes. The general figure of the clothes are made after the figure of the basic standing posture of the human body. The shape of the clothes fits with kinetic characteristic of the human body as the form of the clothes gets twisted, the ease of the clothes changes, and the clothes itself expands. We studied the dressed shapes of blouse according to two types of the arm movement(basic posture and reach forward) and three types of clothes(foundation, blouse with short sleeves and sleeveless) in the sit-down-posture. We accomplished some experimental data on three-dimensional measurement of the dressing shapes using TDS-3100 3-D scanner made in Japan PULSTECH. It is considered that the variant of shapes and distribution of gaps in the dressed shapes of blouse are determined by the adaptability of clothes made in arm movement.

딥러닝 기반의 운전자의 안전/위험 상태 인지 시스템 개발 (Development of Driver's Safety/Danger Status Cognitive Assistance System Based on Deep Learning)

  • 미아오 쉬;이현순;강보영
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.38-44
    • /
    • 2018
  • In this paper, we propose Intelligent Driver Assistance System (I-DAS) for driver safety. The proposed system recognizes safety and danger status by analyzing blind spots that the driver cannot see because of a large angle of head movement from the front. Most studies use image pre-processing such as face detection for collecting information about the driver's head movement. This not only increases the computational complexity of the system, but also decreases the accuracy of the recognition because the image processing system dose not use the entire image of the driver's upper body while seated on the driver's seat and when the head moves at a large angle from the front. The proposed system uses a convolutional neural network to replace the face detection system and uses the entire image of the driver's upper body. Therefore, high accuracy can be maintained even when the driver performs head movement at a large angle from the frontal gaze position without image pre-processing. Experimental result shows that the proposed system can accurately recognize the dangerous conditions in the blind zone during operation and performs with 95% accuracy of recognition for five drivers.

감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구 (A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper)

  • 이광헌;이춘태;정헌술
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF

전륜 옴니휠을 적용한 자세 변환 휠체어의 설계 및 구현 (Design and Implementation of an Omni Wheel-Based Wheelchair Capable of Posture Transformation)

  • 류혜연;권제성;임정학;이경창
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.97-103
    • /
    • 2021
  • In this paper, an omni wheel-based electric wheelchair is proposed that can achieve safe and convenient movement and can improve the convenience of living for mobility-impaired people who cannot move on their own. Generally, mobility-impaired people are afflicted with physical health issues such as pain and secondary body deformities because they often remain seated in wheelchairs for long periods of time. Hence, an electric wheelchair is required whose posture can be changed and whose size can be adjusted according to the user's body type. Such a wheelchair should also facilitate easy change of direction (even in a narrow space) for convenient movement. In this paper, an electric wheelchair featuring omni wheels is proposed that allows posture transformation and facilitates movement in a narrow space. It is believed that the proposed wheelchair can aid in enhancing the convenience of living for mobility-impaired people.

3차원 가상착의를 활용한 방호복 평가 (Evaluation of Protective Clothing Using 3D Virtual Fitting)

  • 이옥경;이희란
    • 한국염색가공학회지
    • /
    • 제35권2호
    • /
    • pp.107-120
    • /
    • 2023
  • The purpose of this study was to analyze the patterns of D level protective clothing, improve their ease of movement by modifying the patterns, and validate the effectiveness of the improvements through 3D virtual fitting and subjective wearing evaluations. Based on previous studies that identified numerous complaints, the patterns of the neck, armpit, and waist areas were modified, resulting in the development of new patterns. To compare and analyze the improved protective clothing with the basic protective clothing, stress and strain were examined after 3D virtual fitting. Additionally, to assess the clothing's allowance, the overall distance between the avatar and the protective clothing, as well as the sectional circumference length and distance of each avatar body part, were measured. Furthermore, the improved protective clothing was manufactured, and a subjective wearing evaluation was conducted with ten males in their twenties as participants. The results showed that the improved protective clothing had evenly distributed stress, larger sectional circumference, and lower average cavity distance. The subjective wearing evaluation also revealed that the suit with improved patterns exhibited superior size suitability, reduced pulling sensation in different body parts, and increased ease of movement. In conclusion, this study confirmed that even minimal pattern modifications can enhance the functionality of protective clothing, alleviating discomfort for wearers.

Development of compact environment control system using eye-ball movement

  • Shin, Young-Kyun;Muhammad, Arif;Hikaru, Inooka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.77.4-77
    • /
    • 2002
  • Communicating devices for the seriously disabled using eye-ball movement or some body movement are proposed. The first one is a device to use image processing, whose input signal is eyeball movement, A feature of this device is that the device can be readily realized using a note-book computer with USB (Universal Serial Bus) interface bus. This device is incorporated with a word processing software called Nearly Ladder. The second one is an emergency call switch which is used by a patient who can move his finger slightly. The patients can switch on the emergency switch only by touching a switch with his finger. The essence of this sensor is a touch sensor. The sensor can be realized using onl...

  • PDF