• Title/Summary/Keyword: Body Joints

Search Result 489, Processing Time 0.027 seconds

Analysis of Body Pressure Distribution Characteristics According to the Design Factors of the Air-Cell Mattress for Preventing Decubitus Ulcer (욕창방지방석용 공기셀의 설계요소에 따른 체압 분포 특성 분석)

  • Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Gyoo-Suk;Mun, Mu-Sung;Lee, In-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.118-126
    • /
    • 2007
  • A finite element simulation model was developed for the performance optimization of a closed type air-cell mattress used for the ulcer prevention. An H-model with material properties of human flesh and kinematic joints were used for the calculation of the body contact pressure. The material property of rubber air-cell was evaluated by tensile test of standard specimen. We evaluated the body contact pressure distribution after laying human model on the inflated air-cell mattress. It was found that the body contact pressure was dependent on cell height. but hardly affected by the thickness of the rubber in a cell.

Generation of Parametric Human Body Segment Models Using Korean Anthropometric Data (한국인의 인체측정 데이터를 이용한 파라메트릭 인체분절모델 생성)

  • Koo, Bon-Yeol;Choi, Myeong-Hwan;Chae, Je-Wook;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.424-436
    • /
    • 2011
  • In this paper, we propose a methodology of generating a parametric segment model for human body using the Korean anthropometric data. The model is defined as an articulated body model consisted with 19 ellipsoid primitives. The primitives are joined at locations representing the physical joints of human body. A lot of previous researches have suggested methodologies of generating body models using the European or American anthropometric data, so that these models were inappropriate for engineering analyses and simulations in case of the Koreans. We defined a set of 35 body dimensions representing our segment model based on the anthropometric data of Koreans. Also we defined four key parameters of age, height, weight and waist circumference, and then we applied regression equations to associate the parameters to the aforementioned dimensions. As the results, we obtained the parametric human body segment models according to the various body types and the subject-specific models for a specific individual. The models in the various industries can be used as the base models for static and dynamic analysis considering the Koreans.

Kinematic Analysis on Giant Swing Backward to Handstand on Parallel Bars (평행봉 뒤 휘돌리기 동작의 운동학적 분석)

  • Ahn, Wan-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.27-40
    • /
    • 2004
  • The objective of this study is to identify the kinematic variables of giant swing backward to handstand as well as individual variations of each athlete performing this skill, which in turn will provide the basis for developing suitable training methods and for improving athlete's performance in actual games. For this end, 3 male athletes, members of the national team, who are in ${\Box}{\Box}H{\Box}{\Box}$ University, have been randomly chosen and their giant swing backward to handstand performance was recorded using two digital cameras and analyzed in 3 dimensional graphics. This study came to the following conclusion. 1. Proper time allocation for giant swing backward to handstand are: Phase 1 should provide enough time to attain energy for swing track of a grand round movement. The phase 3 is to throw the body up high in the air and stay in the air as long as possible to smoothen up the transition to the next stage and the phase 4 should be kept short with the moment arm coefficient of the body reduced. 2. As for appropriate changes of locations of body center, the phase 1 should be comprised of horizontal, perpendicular, compositional to make up a big rotational radius. Up to the Phase 3 the changes of displacements of vertical locations should be a good scale and athlete's body should go up high quickly to increase the perpendicular climbing power 3. When it comes to the speed changes of body center, the vertical and horizontal speed should be spurred by the reaction of the body in Phase 2 and Phase 3. In the Phase 4, fast vertical speed throws the body center up high to ensure enough time for in-the-air movement. 4. The changes of angles of body center are: in Phase 2, shoulder joint is stretching and coxa should be curved up to utilize the body reaction. In the Phase 4, shoulder joint and coxa should be stretched out to get the body center as high as possible in the air for stable landing. 5. The speeds of changes in joints angles are: in the Phase 2 should have the speed of angles of shoulder joints increase to get the body up in the air as quickly as possible. The Phase 3 should have the speed of angles in shoulder joint slow down, while putting the angles of a knee joint up to speed as quickly as possible to ensure enough time for in-the-air movement.

Correlation between Obesity and Lumbar Lordosis in Obese Pre-Menopausal Korean Females

  • Song Mi-Yeon;Chung Won-Suk;Kim Sung-Soo;Shin Hyun-Dae
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.43-50
    • /
    • 2004
  • Objective : Obesity is associated with degenerative arthropathy giving stress on joints. It also amplifies loads of weight bearing joints by changing the gravity line of the body. Our aim is to investigate the correlation between obesity and lumbar lordosis in obese pre-menopausal Korean females. The hypothesis was tested that there is a correlation between obesity and lumbar lordosis. Methods : A cross-sectional evaluation of 44 Females (baseline age 30.77 ± 6.46) with BMI 31.53 ± 3.82 (kg/㎡) was done. Body composition was measured using bio-impedance analysis (BIA), and anthropometry was done by the same observer. A lateral whole spine X-ray was taken in standing position to measure the lumbar lordotic angle (LLA), Ferguson angle (FA) and lumbar gravity line (LGL). A Pearson correlation was used to measure the correlation between obesity and lumbar lordosis (SPSS 10.0 for windows). Results : Body mass index (BMI kg/㎡) had a negative relationship with LLA((equation omitted)=-0.469), FA((equation omitted) =-0.347) and LGL((equation omitted)=-0.389). Body fat rate had a negative relationship with LLA only(γ=-0.385). Waist circumference had a negative relationship with LLA((equation omitted)=-0.345) and LGL((equation omitted)=-0.346). WH ratio had no relationship with lumbar lordosis. Conclusion : These data show that obesity is related to mechanical structures, such as lumbar lordosis. BMI was the most useful index, which reflects a change of mechanical structure of lumbar, more than other variables in this study.

  • PDF

The Effect of Genu Valgum on the Body Mass Index, Moment of Lower Limb Joints, Ground Reaction Force (신체질량지수, 하지관절의 모멘트, 지면반발력이 무릎외반슬에 미치는 영향)

  • Lee, Yong-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effect of genu valgum on the body mass index, movement of lower limb joints, and ground reaction force. Methods : Gait patterns of 30 college students with genu valgum were analyzed and the static Q angle of the femur was measured for selecting genu valgum of the subjects. To analyze the kinetic changes during walking, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. Results : As a result of measuring a relationship between genu valgum and Q-angle, as the Q-angle increases, it showed a genu valgum also increased. Body Mass Index showed a significant difference between the groups was higher in the genu valgum group.(p<.001). The analysis result showed that genu valgum had a significant effect on the internal rotation moment in the hip joint(p<.05). Also, genu valgum had a significant effect on the internal rotation moment of the knee joint(p<.05). The comparative analysis of the Medial-Lateral ground reaction force in the genu valgum group showed a tendency to increase the medial ground reaction force(p<.05). The vertical ground reaction forces of the middle of the stance phase(Fz0) showed a significant increase in genu valgum group(p<.05), in particular the results showed a decrease in the early stance phase(p<.001). Conclusion : In conclusion, the change in body mass is considered to be made by proactive regular exercise for improvement of the genu valgum. In addition, the prevention of the deformation caused by secondary of the genu valgum in this study may be used as an indicator of the position alignment rehabilitation for structural and functional improvements. Applying a therapeutic exercise program for the next lap will require changes in posture alignment.

The comparative study on the metabolism of water-diseases and its' fundamental rule of treatment - Based on the formation of Dongeubogam - (수액질환(水液疾患)의 병기(病機) 및 치료원칙(治療原則)에 대한 비교고찰 - "동의보감(東醫寶鑑)"의 편제(編制)를 중심으로 -)

  • Back, Sang-Ryong
    • Korean Journal of Oriental Medicine
    • /
    • v.9 no.1
    • /
    • pp.65-79
    • /
    • 2003
  • Many of the diseases that occur in a life being are either closely related to water, or they occur by loss or deterioration of water metabolism. There are six parts of study on this subject in ${\ulcorner}$Dongeubogam${\lrcorner}$. The parts are, the part of Jinaek the part of Dameum the part of Sobyeon the part of Bujong the part of Changman and the part of Seub. In these parts, it mentions loss of perspiration, abnormal urination, edema, abdominal dropsy, formation of abnormal body fluid and intrusion of dampness into the body and etc as the abnormal water metabolism. Loss of perspiration and urination is a process of eliminating the dampness in the body. Perspiration would be the abnormality of yanghwa[陽化]. Urination would be the loss of eumhwa[陰化]. Eum[飮] is the fluid accumulated in the body that failed to go through the process of Cihwa[氣化]. Dam[痰] is formed when the body fluid is heated by the smoking-fire. Meanwhile, the dampness occurs when the water penetrates into the bones, muscles and joints. Edema and abdominal dropsy are both outcomes of accumulated body fluid. Edema is the liquified body fluid congested on the surface or the peripheral ends of the body. Abdominal dropsy is congestion of fluid, that lost the characteristic of blood due to blood deterioration, in the abdominal part.

  • PDF

Combined training improves body composition, balance, and muscle function in sarcopenia elderly

  • Jung, Won Sang;Moon, Hwang Woon
    • Journal of Sport and Applied Science
    • /
    • v.5 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Purpose: Sarcopenia is defined as a decrease in muscle mass, strength, and function with age that affects overall body function. We aimed to investigate the effect of combined training on body composition, balance, and muscle function in sarcopenia elderly. Research design, data, and methodology: Twenty-eight sarcopenia elderly (age 74.9±4.5 years) were randomly assigned to an exercise, EG (n=14), or a control, CG (n=14), group. The EG performed an intervention consisting of combined exercise training (60-75 min) for a total of 12 weeks, three times a week. The CG maintained their usual daily lifestyle during the intervention period. We measured body weight, body mass index (BMI), % body fat, free fat mass, balance ability, peak torque in shoulder, knee, and lumbar joints normalized for bodyweight in one second. Results: The EG showed improved body composition (i.e., BMI, fat-free body mass, fat mass; all p < 0.031, η2 > 0.179), balance (i.e., right and left of static and dynamic balance and fast 10 m walk; all p < 0.049, η2 > 0.152), and muscular function (i.e., 90°/sec and 180°/sec peak power per kg bodyweight, 90°/sec average power per kg bodyweight, 180°/sec total work, and 180°/sec endurance ratio; all p < 0.045, η2 > 0.158). Conclusions: Combined exercise training improves muscle mass and strength, body composition, balance, and muscle function in sarcopenia elderly.

Low back pain due to Sacro iliac joint Dysfunction (천장관절 기능이상과 요통증)

  • Lim, Sung-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.3
    • /
    • pp.25-40
    • /
    • 1999
  • The hub of weight bearing in the human body for both static and dynamic activities is the lumbopelvic region. It is a key region of extraordinary stability, since the trunk and ground forces converage in this region. The two sacroiliac joints form an integral part of this lumbopelvic unit. Considerable effort has been expended to study and quantify the normal range of movement of the sacroiliac joints Mitchell suggests that the ilium rotates in a posterior direction at heel strike and progresses in an anterior direction as the individual passes through the stance phase. The overall key appears to lie in determining the weight-bearing pattern of the sacroiliac (lumbopelvic) region from above and below that results in the familiar pain of sacroiliac dysfunction, assessing the status of the injured tissues, and intervening with the proper treatment protocols that maximize the body's healing processes. The purpose of this chapter is to provide a comprehensive overview of the sacroiliac joint's tissues and biomechanics, as well as concepts of evaluation and treatment. This overview is aimed at assisting the clinician in identifying the forces that are potentially destructive to the lumbopelvic tissues.

  • PDF

A Biomechanical Analysis of Lower Extremity Kinematics and Kinetics During Level Walking (평지를 걸어갈 때 하지운동과 작용하는 하중에 대한 생체역학적 해석)

  • Son, Kwon;Choi, Gi-Yeong;Chung, Min-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2101-2112
    • /
    • 1994
  • A two-dimensional biomechanical model was developed in order to calculated the lower extremity kinematics and kinetics during level walking. This model consists of three segments : the thigh, calf, and foot. Each segment was assumed to be a rigid body ; its motion to be planar in the sagittal plane. Five young males were involved in the gait experiment and their anthropometric data were measured for the calculation of segmental masses and moments of inertial. Six markers were used to obtain the kinematic data of the right lower extremity for at least three trials of walking at 1.0m/s, and simultaneously a Kistler force plate was used to obtain the foot-floor reaction data. Based on the experimental data acquired for the stance phase of the right foot, calculated vertical joint forces reached up to 0.91, 1.05, and 1.11 BW(body weight) at the hip, the knee, the ankle joints, respectively. The flexion-extension moments reached up to 69.7, 52.3, and 98.8 Nm in magnitude at the corresponding three joints. It was found that the calculated joint loadings of a subject were statistically the same for all his three trials, but not the same for all five subjects involved in the gait study.

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF