• Title/Summary/Keyword: Body Joints

Search Result 489, Processing Time 0.03 seconds

Functional Anatomy of the Temporomandibular Joint and Pathologic Changes in Temporomandibular Disease Progression: A Narrative Review

  • Yeon-Hee Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.14-35
    • /
    • 2024
  • The temporomandibular joint (TMJ) is one of the most unique joints in the human body that orchestrates complex movements across different orthogonal planes and multiple axes of rotation. Comprising the articular eminence of the temporal bone and the condylar process of the mandible, the TMJ integrates five major ligaments, retrodiscal tissues, nerves, and blood and lymph systems to facilitate its function. Cooperation between the contralateral TMJ and masticatory muscles is essential for coordinated serial dynamic functions. During mouth opening, the TMJ exhibits a hinge movement, followed by gliding. The health of the masticatory system, which is intricately linked to chewing, energy intake, and communication, has become increasingly crucial with advancing age, exerting an impact on oral and systemic health and overall quality of life. For individuals to lead a healthy and pain-free life, a comprehensive understanding of the basic anatomy and functional aspects of the TMJ and masticatory muscles is imperative. Temporomandibular disorders (TMDs) encompass a spectrum of diseases and disorders associated with changes in the structure, function, or physiology of the TMJ and masticatory system. Functional and pathological alterations in the TMJ and masticatory muscles can be visualized using various imaging modalities, such as cone-beam computed tomography, magnetic resonance imaging, and bone scans. An exploration of potential pathophysiological mechanisms related to the TMJ anatomy contributes to a comprehensive understanding of TMD and informs targeted treatment strategies. Hence, this narrative review presents insights into the fundamental functional anatomy of the TMJ and pathological changes that evolve with TMD progression.

Joining of Mullite (3Al2O3·2SiO2) Ceramics for Semiconductor Back-End Process by Reaction-Bonded Aluminum Oxide (RBAO) Process (반응소결 알루미나 공정 (RBAO)을 이용한 반도체 후공정용 뮬라이트(3Al2O3·2SiO2) 세라믹스 접합)

  • Tae-Gyeong Kim;Hyun-Kwuon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.96-101
    • /
    • 2024
  • In this study, we report on the joining of mullite ceramics using the reaction-bonded aluminum oxide method without applying any external pressure, in consideration of a possible multilayer ceramic substrate in semiconductor back-end process. For this purpose, Al/Al2O3/SiO2/Mullite powder mixture paste was applied to the joining surfaces between two parent mullite bodies of the same composition, and then sintered at 1,650 ℃ for 2 h in air, resulting in a dense and rigid mullite ceramic joints. Phase and microstructural analysis of the joined mullites showed that the reaction bonding by Al oxidation and thereafter mullite formation were completed during the heat treatment process. However, due to the difference in sintering behavior between the parent body and the joining layer, few pore of which size proportional to the joining layer thickness, were observed at some parts of the joining interface. The formation of the pore and its causes was discussed.

  • PDF

The Effect of Occlusal Condition on Physical Fitness and Motor Capacity in Athletes According to Various Types of Mouthguards (마우스가드의 형태가 운동선수의 체력 및 운동능력에 미치는 영향)

  • Choi, Su-Jeong;Jung, Jae-Kwang;Lee, Kyu-Bok;Chae, Woen-Sik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This study examined the effects of the occlusal stability and a partial coverage mouthguard on physical fitness and motor capacity to determine the importance of the occlusal stability as a possible action mechanism of mouthguards on physical performance. Twenty physical education students were included for measurements of their handgrip strength, back strength, whole body reaction time, flexibility, sidestep test, stork stand test and jumping test according to the following 5 different occlusal conditions: mouth closed position without a mouthguard, with a full coverage mouthguard, with a right partial coverage mouthguard, with a left partial coverage mouthguard and with anterior partial mouthguard. The results revealed no significant difference in any of the measured physical factors between the occlusal conditions with and without a full-coverage mouthguard. On the other hand, a significant difference was observed in whole body reaction between the occlusal conditions with and without the partial coverage mouthguards. Therefore, isokinetic muscle tests on both knee joints and the Wingate anaerobic power test should be performed under the following five occlusal conditions: with or without full-coverage maxillary custom-made mouthguard, with a unilateral right or left partial-coverage maxillary mouthguard and with an anterior partial-coverage maxillary mouthguard. These results suggest that the partial coverage mouthguard had a short-term beneficial effect on agility rather than full coverage mouthguard.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Multiple Rice Body in both Glenohumeral Joint and Subacromial & Subdeltoid Bursa Simultaneously combined with Full Thickness Cuff Tear in Rheumatoid Arthritis: Arthroscopic Treatment & MR Appearance -A Case Report- (류마토이드 관절염에서 회전근 개 전층 파열과 동반되어 견관절과 견봉하 및 삼각근하 점액낭에 동시에 발생된 다발성 미립체: 관절경적 치료 및 자기 공명 영상 소견 -1례 보고-)

  • Noh, Kyu-Cheol;Chung, Yung-Khee;Nah, Kyong-Soo;Yoo, Jung-Han
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.4 no.1
    • /
    • pp.65-69
    • /
    • 2005
  • Numerous small fibrinous rice bodies are a common finding in joints afflicted with rheumatoid arthritis(RA) or seronegative arthropathy, Subacromial and subdeltoid bursitis of the shoulder associated with multiple rice body formation is a rare occurrence. To our knowledge, this is the first report to describe the arthroscopic treatment of massive rice bodies in both glenohumeral joint and subacromial-subdeltoid bursae combined with full thickness of rotator cuff in RA. Besides, the MR appearance of subacromial-subdeltoid bursal rice bodies have been previously described in only few recent reports. Therefore, we also describe the MR appearances subacromial-subdeltoid bursae associated with multiple rice bodies in RA.

  • PDF

Comparison Between Right and Left Muscle Activities of Hip and Trunk During Manual Task in Asymmetric Weight-Bearing Posture (비대칭적 입식자세에서 상지 조립 작업 시 체간 및 둔부 근육의 좌우 근활성도 비교)

  • Choung, Ji-Yun;Jeon, Hye-Seon;Lee, Chung-Hwi;Lee, Jeon-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • The purpose of this study was to compare the electromyographic(EMG) activities of trunk and hip muscles between right and left sides while subjects performed prolonged manual task in asymmetric and symmetric weight-bearing posture. Fifteen healthy male college students were recruited for this study. The subjects were asked to perform bimanual upper extremity task for 6 minutes in two different standing postures. In the symmetric weight-bearing posture, the subjects were standing with evenly distributed body weights to both legs. In the asymmetric weight-bearing posture, the subjects distributed about 90% of their body weight onto their preferred(supporting) leg and 10% of their body weight onto the opposite leg while they were standing. EMG activities of the right and left internal oblique, erector spinae, gluteus maximus, and gluteus medius were measured and normalized as % MVIC. Then the EMG data were statistically analyzed using paired t-tests. The EMG activities of all measured muscles were not significantly different between the right and left side in the symmetrical weight-bearing posture(p>0.05). However, the EMG of the supporting side internal oblique was significantly lower than the opposite side(p<0.05), and the EMG of the erector spinae, gluteus maximus, and gluteus medius were significantly greater on the supporting side(p<0.05). The results of this study support that unbalanced use of right and left muscle possibly causes the changes in muscle length which results in asymmetry of trunk and hip muscles. Furthermore, the uneven weight support onto right and left legs will cause a distortion of viscoelastic ligaments around hip and sacroiliac joints in the long run. Further studies to determine the effect of various manual tasks on the trunk and hip muscles as well as the effect of asymmetrical weight-bearing standing posture on hip and back muscle fatigue may be required.

Therapeutic Effects of Ephedra sinica Stapf Herb-Acupuncture on Adjuvant-induced Polyarthritis of Rat (흰쥐의 Adjuvant 유발 다발성 관절염에 대한 마황 약침의 치료 효과)

  • Lee Han-Chang;Yeom Mijung;Kim Gun-Ho;Shim In-Sop;Choi Kang-Duk;Lee Hye-Jung;Hahm Dae-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.346-351
    • /
    • 2003
  • The current studies investigated the therapeutic effects of Ephedra sinica Stapf (ES) herb-acupuncture on the inflammatory responses of rat arthritic joint, which was induced by the intradermal injection of heat-killed Mycobacterium tuberculosis emulsified in squalene to the base of the tail. The measurements of body weight and articular index were exploited as the assessment methods addressing arthritic symptoms, and the expression profiles of cytokines such as TNF-α, IL-1β and IL-6 in the rat joint were analyzed using RT-PCR. The articular indexes of arthritic rats were significantly restored after the treatment with ES herb-acupuncture. Although the clinical symptoms of arthritic rats were apparently alleviated by the ES treatments, their body weights were not recovered. It maybe due to the weight-loss and energy enhancement effects of ES extracts. The expression of TNF-α, IL-1β and IL-6 genes, which were highly stimulated in the knee joints of arthritic rats, were restored to the levels of normal rats after the ES treatment. The therapeutic effect of ES herb-acupuncture was not observed in ES-treated, non-acupoint arthritic group as a sham control. The ES herb-acupuncture into an acupoint ST36 was found to be effective in alleviating the arthritic symptoms in adjuvant-induced arthritis rats as regards the body weight, joint appearance and the expression profiles of inflammatory cytokines.

Comparison of the Effects of Different Foot Positions During Body-lifting in Wheelchair on Shoulder Muscle Activities, Peak Plantar Pressure, Knee Flexion Angle, and Rating Perceived Exertion in Individuals With Spinal Cord Injury (휠체어에서 엉덩이 들기 동작 동안 발위치가 척수손상환자의 어깨 근활성도, 최대 족저압, 무릎굽힘 각도, 운동자각도에 미치는 효과 비교)

  • Lee, Wang-jae;Lim, One-bin;Yoon, Byoung-gu;Lee, Bum-suk;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Individuals with spinal cord injury (SCI) rely on their upper limbs for body-lifting activity (BLA). While studies have examined the electromyography (EMG) and kinematics of the shoulder joints during BLA, no studies have considered foot position during BLA. Objects: This study compared the effects of different foot positions during BLA on the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion in individuals with SCI. Methods: The study enrolled 13 mens with motor-complete paraplegic SCI, ASIA (American Spinal Injury Association) A or B. All subjects performed BLA with the feet positioned on the wheelchair footrest and on the floor independently. Surface EMG was used to collect data from the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii. The peak plantar pressure was measured using pedar-X and the knee flexion angle with Image J. Borg's rating perceived exertion scale was used to measure the physical activity intensity level. The paired t-test was used to compare the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion between the two feet positions during BLA. Results: The activity of the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii and rating perceived exertion decreased significantly and the peak plantar pressure and knee flexion angle increased significantly when performing BLA with the feet positioned on the wheelchair footrest compared with on the floor (p<.05). Conclusion: These findings suggest that individuals with SCI may perform BLA with the feet positioned on the wheelchair footrest for weight-relief lifting to decrease the shoulder muscle activities and the rating perceived exertion and to increase the peak plantar pressure and the knee flexion angle.

3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision (인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용)

  • Han Young-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.11-18
    • /
    • 2005
  • For expressing intention the human often use body languages as well as vocal languages. Of course the gestures using arms and hands are the representative ones among the body languages. Therefore it is very important to understand the human arm motion in human-computer interaction. In this respect we present here how to estimate 3D pose of human arms by using computer vision systems. For this we first focus on the idea that the human arm motion consists of mostly revolute joint motions, and then we present an algorithm for understanding 3D motion of a revolute joint using vision systems. Next we apply it to estimating 3D pose of human arms using vision systems. The fundamental idea for this algorithm extension is that we may apply the algorithm for a revolute joint to each of the revolute joints of hmm arms one after another. In designing the algorithms we focus on seeking closed-form solutions with high accuracy because we aim at applying them to human computer interaction for ubiquitous computing and virtual reality.

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.