• Title/Summary/Keyword: Body Joints

Search Result 489, Processing Time 0.03 seconds

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

What is the Appropriate Kettlebell Mass for a Kettlebell Swing? (케틀벨 스윙 시 적당한 케틀벨의 무게는 얼마일까?)

  • Kim, Bo Kyeong;Thau, Dao Van;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.308-313
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.

A Study about the Training Program for the Kolman Technique on the Horizontal Bars (체조 철봉 콜만 기술동작의 훈련프로그램 적용 및 향상도평가)

  • Back, Jin-Ho;Park, Jong-Chul;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • This study develops a technique training program to enhance the completion of Kolman, the high air flight technique, and applies it to two national athletes of the horizontal bar, one of the gymnastic events, for eight weeks. After that, their improvement was measured through 3D motion analysis to help them elevate their performance. The training program includes swing, hand release, twist, and bar hold, and its implementation produced the results stated below. They were made to practice the motion in the following way. After the hand-standing of giant swing which initiates the motion, they lift their body upward a little bit more. Next, they take their body down almost like a vertical descent and make a deep tap swing. Instead of doing the tap swing which widens the flection of hip and shoulder joints, while body revolution is more emphasized in particular, they release the bar as raising the centroid of their body sufficiently. During the flight, they try to narrow every joint in their body. As a result, the bar's elasticity becomes greatly increased, and since the backing rate of their body gets higher, the centripetal force of the swing is improved that they can release the bar in the higher position. In addition, because they can erect their body faster during the flight, they can perform comfortable twist and revolution in the air. They can also adjust the direction of the flight easily without too much concern for the proper timing of hand release as they rise. Thereby, they can not only maintain adequate distance from the bar for the bar hold but also ensure enough distance for body revolution and twist.

Gait Phases Classification using Joint angle and Ground Reaction Force: Application of Backpropagation Neural Networks (관절각과 지면반발력을 이용한 보행 단계의 분류: 역전파 신경망 적용)

  • Chae, Min-Gi;Jung, Jun-Young;Park, Chul-Je;Jang, In-Hun;Park, Hyun-Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.644-649
    • /
    • 2012
  • This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.

Frequency Estimation of Human Movements Using Kinect and Its Application (키넥트를 이용한 인간 움직임의 주파수 예측 및 이를 활용한 응용 프로그램 구현)

  • Seo, Myoung-Gyu;Kim, Sang-Yeob;Ju, Jang-Bok;Lee, Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1248-1257
    • /
    • 2017
  • We propose a frequency estimation algorithm of human movements using Kinect. We collect the 3D coordinates of the joints of a human body and then obtain the frequency-domain description of the movements using the discrete Fourier transform (DFT). By choosing the frequency with the biggest magnitude in the selected frequencies of each of human's joint, we obtain the major beat of the human movements. Experimental results show that the proposed algorithm accurately estimates the frequency of human movements. We expect that the proposed algorithm would be applied to many AR and VR applications as a preprocessing.

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

ELASTOKINEMATIC ANALYSIS OF A SUSPENSION SYSTEM WITH LINEAR RECURSIVE FORMULA

  • KANG J. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.375-381
    • /
    • 2005
  • This paper presents linear algebraic equations in the form of recursive formula to compute elastokinematic characteristics of a suspension system. Conventional methods of elastokinematic analysis are based on nonlinear kinematic constrant equations and force equilibrium equations for constrained mechanical systems, which require complicated and time-consuming implicit computing methods to obtain the solution. The proposed linearized elastokinematic equations in the form of recursive formula are derived based on the assumption that the displacements of elastokinematic behavior of a constrained mechanical system under external forces are very small. The equations can be easily computerized in codes, and have the advantage of sharing the input data of existing general multi body dynamic analysis codes. The equations can be applied to any form of suspension once the type of kinematic joints and elastic components are identified. The validity of the method has been proved through the comparison of the results from established elastokinematic analysis software. Error estimation and analysis due to piecewise linear assumption are also discussed.

Dynamics and Control of 2 DOF 5-bar Parallel Manipulator with Closed Chain

  • Chung, Young-Hoog;Lee, Jae-Won;Sung, Yoon-Gyeoung;Joo, Hae-Hoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.5-10
    • /
    • 2001
  • A method is proposed to obtain the Jacobian matrix of the 5 -bar parallel manipulator by employing the orthogonality between position and velocity vectors of rotating rigid-body around a fixed point. The dynamics of the 5-bar parallel manipulator is analyzed and utilized to design the computed-torque controller by developing a transformation matrix of the passive joints with respect to the active ones. In experimental demonstration, it shows that high-speed and accuracy tasks are performed by the proposed computed-torque control.

  • PDF

Zirconia Ceramic Powder Coating of Ti-6AI-4V by Laser Cladding (레이저 클래딩을 이용한 Ti-6AI-4V의 Zirconia 세라믹 분말 코팅)

  • Kang, Kyung-Ho;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.783-788
    • /
    • 2011
  • The recent development of bio-ceramic material is being studied in various bio-material engineering field. There are lots of technical difficulties because manufacturing or bonding technique are required bio-friendliness, cleanliness and persistence. Zirconia ceramic powder is cladded on Ti-6AI-4V metallurgically by laser cladding processing. Laser cladding system with powder feeding delivery is designed and manufactured for optimum processing condition. Increasing of manufacturing speed and good quality of clad layer are achieved by application of preheating of substrate before laser cladding. The thin dilution and good clad layer on the substrate are obtained for applications of bio-materials such as the dental materials and the articulated joints of human body.

A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration (차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구)

  • Sung, Young-Suk;Kang, Min-Seok;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF