• Title/Summary/Keyword: Bmp4

Search Result 315, Processing Time 0.024 seconds

MOLECULAR BIOLOGY IN DENTAL IMPLANT (치과 임플란트에서의 분자생물학적 연구)

  • Jee, Yu-Jin;Ryu, Dong-Mok;Lee, Deok-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix: Case Report (Putty형 탈회동종골을 이용한 골유도 재생술: 증례보고)

  • Jang, Han-Seung;Kim, Su-Gwan;Moon, Seong-Yong;Oh, Ji-Su;Park, Jin-Ju;Jeong, Mi-Ae;Yang, Seok-Jin;Jung, Jong-Won;Kim, Jeong-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.420-424
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., Arlington, Tenn, USA), is a newly designed, injectable putty with a reliable demineralized bone matrix (DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent osteoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

BONE REGENERATION WITH INJECTABLE MPEG-PCL DIBLOCK COPOLYMER AND BONE MARROW MESENCHYMAL STEM CELL (골수 줄기세포와 주사형 MPEG-PCL diblock copolymer를 이용한 조직공학적 골재생)

  • Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun;Kim, Won-Suk;Shin, Joo-Hee;Lee, Eui-Seok;Rim, Jae-Suk;Jang, Hyon-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Aim of the study: As an injectable scaffold, MPEG-PCL diblock copolymer was applied in bone tissue engineering. In vivo bone formation was evaluated by soft X-ray, histology based on the rat calvarial critical size defect model. Materials and Methods: New bone formation was evaluated with MPEG-PCL diblock copolymer in rat calvarial critical size bone defect. No graft was served as control. 4, 8 weeks after implantation, gross evidence of bone regeneration was evaluated by histology and soft X-ray analysis. Results: The improved and effective bone regeneration was achieved with the BMP-2 and osteoblasts loaded MPEG-PCL diblock copolymer. Conclusion: It was confirmed that MPEG-PCL temperature sensitive hydrogels was useful as an injectable scaffold in bone regeneration.

A STUDY OF THE EFFECTS OF SEVERAL BONE-ENHANCING AGENTS (수종 골형성 증진재의 골형성능에 관한 조직형태계측학적 연구)

  • Shin, Min-Cheol;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.282-292
    • /
    • 2003
  • Several agents are in use to promote new bone formation during bone graft procedures in maxillofacial region. Among them, we have used crude BMP, PRP, and P-15 for experimentally created defects with accompanying graft materials in the rabbit model. The aim of this study is to analyze the effect of above mentioned agents on bone formation using histologic and histomorphometrical methods, thus to provide experimental support for clinical application of these agents. Six rabbits were used as experimental animals. Four surgical defects were created on the distal femoral heads of each animal using trephine drill. The defects were filled with each agents with accompaning graft materials as experimental groups and particulate corti-co-cancellous autogenous graft as control. For histomorphometric analysis, fluorescent dye was injected at 2week and 1week before sacrifice. Then, the animals were sacrificed at 2, 4 and 8weeks after surgery and histologic and histomorphometric examinations were achieved. At two weeks after bone graft, bone formation and active remodeling process were examined in all experimental groups and the control. But the intensity of such activities of the experiments were somewhat weaker than that of the control. In BMP group, the amount of newly formed osteoid was increased constantly and the amount was preserved constantly in PRP group. But in P-15 group, the amount of newly formed osteoid was decreased with time to 8week after surgery. Histologic findings showed superior bony quantity and quality in PRP group than that of P-15 group. MAR(Mineralization Apposition Rate) of all experimental groups were slower than that of control group. In P-15 group, constant foreign body reaction was observed at all periods and the graft material showed inwardly destroyed characteristics rather to mature. The data from this study provide the basis for future studies for evaluating the long-term remodeling process and foreign body reactions observed in P-15 group and clinical study for predictable use of these agents.

Efficiency of the Non-structural BMPs with Reduced Rainfall Runoff (강우 유출수를 이용한 비구조적 BMPs의 저감효율 분석)

  • Jeon, Je Hong;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yu, Na Young;Ju, So Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.61-67
    • /
    • 2015
  • Effect of tillage on time of initial runoff, runoff coefficient, NPS pollution load, soil erosion and crop productivity were studied. Eight runoff plots of $5{\times}30m$ on loamy sand field that were 4 respective plots of 3 % and 8% slope were prepared. Treatment included conventional tillage (CT) and no-till (NT). Time of initial runoff from NT retarded between 247~261 % compared with that from CT. Under 3% slope, runoff coefficient in NT was 63.5 % lower than that in CT. The reduction under 8 % slope was 61.7 %. Differences in runoff reduction between 3% and 8% plots were not significant. NT could reduce more than 60 % of NPS pollution and between 50~85 % of sediment if compared with CT. Productivity of NT was also shown that it was not lower than that of CT. It was expected that the results could be used as a fundamental data for estimating a reduction load in Korea TMDL from a no-till BMP on loamy sand agricultural fields.

Experimental Study of Dohongsamul-tang (Taohongsiwu-tang) on Fracture Healing (도홍사물탕(桃紅四物湯)이 골절 유합에 미치는 실험적 연구)

  • Ha, Hyun Ju;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.2
    • /
    • pp.47-66
    • /
    • 2020
  • Objectives The purpose of this study is to evaluate the bone healing effect of Dohongsamul-tang (Taohongsiwu-tang; DH) on femur fractured mice. Methods Mice were randomly divided into 4 groups (naive, control, positive control and DH). All groups except naive group were subjected to bone fracture on both hind limb femurs. Naive group received no treatment at all. Control group was fed with normal saline, and positive control group was orally medicated with tramadol. DH-treated group was orally medicated with DH. We analysed the levels of BMP2, COX2, Col2a1, Sox9, Runx2, and Osterix genes on 3, 7 and 14 days after fracture. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, creatinine, total cholesterol, and triglyceride levels were measured for safety assessment. Results In morphological, histological analysis, callus formation process of DH-treated group was faster than the control group. BMP2, Sox9 gene expression were significantly increased at 7 days after fracture compared to the control group. COX2, Col2a1 gene expression were significantly increased at 14 days after fracture compared to the control group. Total cholesterol was significantly increased by DH at 3 days. Triglyceride was significantly decreased by DH at 3, 7 days after fracture compared to the control group. Conclusions Dohongsamul-tang promoted bone healing process after fracture by stimulating the bone regeneration factors. And DH shows no hepatotoxicity, nephrotoxicity and serum lipid abnormality. In conclusion, it seems that DH helps to promote fracture regeneration after bone fracture by regulating gene expressions related to bone repair.

Healing Effect of Danggwisu-san (Dangguixu-san) on Femur Fractured Mice (당귀수산(當歸鬚散)이 대퇴골절 유발 생쥐에 미치는 영향)

  • Jeon, Dong-Hwi;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Objectives This study was designed to evaluate the effects of Danggwisu-san (Dangguixu-san, DG) on bone repair from femur fracture in mice. Methods Mice were randomly divided into 4 groups (normal, control, positive control and DG 300 mg/kg-treated group). In order to investigate the effects of DG on gene expressions in experimental animals with fracture, we measured the levels of bone morphogenetic protein-2 (BMP2), cyclooxygenase-2 (COX2), Sox9, collagen type II alpha 1 chain (Col2a1), runt-related transcription factor 2 (Runx2), osterix genes. After the cytotoxicity test, we analyzed the levels of expression of osteocalcin and Runx2, and tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine. The process of fusion in the fracture was also investigated by gross examination. Results Through in vivo BMP2, COX2 gene expression significantly decreased. Sox9 significantly increased. Col2a1, Runx2, osterix gene expression also increased as well, but there was no statistical significance. The degree of unilateral fracture fusion investigated by gross examination was significantly faster than those of the other groups. Through in vitro the level of TNF-α in macrophages was increased by DG in a dose-dependent mannerand and 250 and 500 ㎍/mL showed statistical significance. Osteocalcin and Runx2 genes expressions increased when DG was treated in osteoblasts. Conclusions DG promotes the healing of the fracture through the expression of bone repair-related genes and TNF-α production. This study may set the foundation for the clinical application of DG to the patients with bone fractures.

Human Cord Serum as a Fetal Bovine Serum Substitute for the Culture of Human Amnion-Derived Stem Cells (인간의 양막유래 줄기세포의 체외 배양 시 소태아혈청 대체제로서의 인간제대혈청)

  • Kim, Jin-Young;Park, Se-A;Kang, Hyun-Mi;Kim, Eun-Su;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.85-96
    • /
    • 2007
  • Mesenchymal stem cells (MSC) are promising candidates for cell-based therapies. One major obstacle for their clinical use is the unsafety of fetal bovine serum (FBS), which is a crucial part of all media currently used for the culture of MSC. We investigated the effect of human cord serum (HCS) on the growth response, mRNA and protein expressions of human amnion-derived stem cells (HAM). HAM were isolated from the amnion after a Caesarean section and cultured in DMEM supplemented with 10% FBS, 5% HCS or 10% HCS. During culture, their biological characteristics at earlier and later passages were analyzed using RT-PCR and immunocytochemistry. Regardless of serum sources, HAM showed the prominent expression of Oct-4, Rex-1, SCF, FGF-5, BMP-4, nestin, GATA-4, NCAM and HLA ABC genes. The expression profile was observed even at later passages. Similarly, HAM cultured in either FBS or HCS exhibited the distinct protein expression of collagen I, II, III and XII, fibronectin, $\alpha$-smooth muscle actin, vimentin, CK18, CD54, FSP, TRA-1-60, SSEA-3, -4 and HLA ABC. However, desmin expression was only observed in HAM cultured in medium supplemented with FBS and vWF expression was only found in HAM cultured in medium supplemented with HCS. Overall pattern of gene and protein expression of HAM was typical of known adult stem cells such as bone marrow-derived MSC. In conclusion, HCS could be as effective as FBS for the culture of HAM.

  • PDF

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

Discovery and characterization of berberine derivatives as stimulators of osteoblast differentiation

  • Han, Younho;Park, Won-Jong
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.165-172
    • /
    • 2019
  • Berberine has been used clinically for more than a decade to treat various diseases, has been shown to be effective in osteoblast differentiation, and is a potential treatment option for osteoporosis. However, compared with existing osteoporosis drugs, berberine is somewhat less effective. This study aimed to identify a new compound with efficacy superior to that of berberine. The osteogenic activities of various berberine derivatives were evaluated via cell differentiation in C2C12 preosteoblast cell lines. Alkaline phosphatase (ALP) staining assay and structure-activity relationship demonstrated that compound 2b had a potent osteogenic effect. Furthermore, compound 2b dose dependently increased ALP activity and showed no toxicity at the effective concentration, indicating its efficacy. Additionally, compound 2b upregulated BMP2-induced transcriptional activity in a promoter activity assay using ALP, BSP, and OC promoters.