• Title/Summary/Keyword: Bluff Body

Search Result 147, Processing Time 0.028 seconds

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air (초음속 공기장에서 Bluff-Body를 이용한 안정화염의 특성과 구조)

  • Kim, Ji-Ho;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.147-153
    • /
    • 2002
  • Experimental investigations are performed on the stability and the structure of bluff-body stabilized hydrogen flames. The velocities of coflow air are varied from subsonic to supersonic velocity of Mach 1.8 and OH PLIF images and Schilieren images are used for analysis. Three characteristic flame modes are classified into three regimes with the variation of fuel-air velocity ratio; a jet like flame, a central-jet dominated flame and a recirculation zone flame. Stability curves are drawn to find the blowout regimes and to show that flame stability is improved by increasing the lip thickness of fuel nozzle that works as bluff-body. $Damk{\ddot{o}hler$ number is adopted in order to scale the blowout curves of each flame obtained at different sizes of the bluff-body and all blowout curves are scaled successfully regardless of its bluff-body size.

  • PDF

The Simulation of LES Model For Premixed Combustion around A Bluff Body (LES 모델을 적용한 Bluff-body 주위의 예혼합 연소 해석)

  • Jung, Eui-Man;Ku, Ja-Yeo
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • This paper present result of numerical simulation of premixed combustion around a triangle Bluff Body. And a numerical simulation of a premixed flame stabilization by a bluff body was performed using LES Model. The calculated results from the LES showed a good agreement with experiment data than k-model. Premixture combustion has flammability limit, quenching distance, smallest ignition energy has the combustion quality of the back. Bluff body makes a recirculation zone. Therefor velocity of behind bluff body is very slow. It was caused by slowly position speed and the fire occurred after the Bluff Body. Occurrence of fire it made the waste gas of high speed and the thrust made well.

  • PDF

Analysis of the Flame Dynamic Characteristics in the ducted Combustor with Bluff Body (보염기가 존재하는 덕트형 연소기에서 화염의 동적 특성에 관한 연구)

  • Jeong, Chanyeong;Kim, Teasung;Song, Jinkwan;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.351-354
    • /
    • 2012
  • The characteristics of flame dynamics occurring near bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Flashback occurs due to the change of pressure gradient in the combustor, and flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. Re-stabilization takes place as the flame moves downstream. This process is supported by a strong vortex structure behind bluff body.

  • PDF

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF

Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor (Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사)

  • Kong, Min-Seog;Hwang, Cheol-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

An Experimental Study on the Drop Distribution and the Combustion Characteristics with different Bluff-body Geometries (보염기 형상에 따른 연료액적분포와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. Diameters of the bluff-body in this experiment are 6, 8, and 10 mm and the impingement $angles({\theta})\;are\;30^{\circ},\;60^{\circ},\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The SMD and Rosin-Rammler distribution was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. The results obtained are as follows; In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the impingement angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was increased, the CO concentration was decreased.

  • PDF

Mixing Enhancement/Suppression of Separated-and-Reattaching Flow by an Upstream Small Object

  • IINVMA, Yusuke;FUNAKI, Jiro;HIRATA, Katsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.106-110
    • /
    • 2004
  • Generally, flow around a bluff body such as a circular cylinder is complicated compared with that around a streamlined body because of the existence of separated shear layers. Long bluff body such as a flat blunt plate is more complicated than short bluff body, because of separated-and-reattaching flow on the after bodies.(omitted)

  • PDF

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

Numerical simulation of unsteady flow field behind bluff body (Bluffbody 비정상 유동장에 대한 수치해석)

  • Ryu, Myeong-Seok;Gang, Seong-Mo;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.350-357
    • /
    • 1997
  • The transient incompressible flow behind the axisymmetric bluff body is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with a stochastic simulation of diffusion using random walk technique is employed to account for the transport processes of the vortex elements. The numerical solutions for 2-dimensional recirculating flow behind a backward-facing step in the laminar range of Reynolds number are compared with experimental data. The present simulation focuses on the transitional flow regime where the recirculation zone behind the bluff body becomes highly unsteady and large-scale vortex eddies are shed from the bluff body wake due to intrinsic shear layer instabilities. The unsteady vertical flow structures and the mixing characteristics behind the bluff body are discussed in detail.

Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body (사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.