• Title/Summary/Keyword: Blueshift

Search Result 19, Processing Time 0.028 seconds

Outflows in Sodium Excess Objects

  • Park, Jongwon;Jeong, Hyunjin;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2015
  • van Dokkum and Conroy revisited the strong Na I lines at $8200{\AA}$ found in some giant elliptical galaxies and interpreted it as evidence for bottom-heavy initial mass function. Jeong et al. later found a lot of galaxies showing strong Na D doublet absorption line at $5900{\AA}$ (Na D excess objects; a.k.a. NEOs) and showed that their origins can be different for different types of galaxies. While the excess in Na D seems related with interstellar medium in late-type galaxies, smooth-looking early-type NEOs suggest no compelling sign of ISM contributions. To test this finding, we measured doppler shift in the Na D line. We hypothesized that ISM is more likely to show blueshift due to outflow caused by either star formation or AGN activities. In order to measure the doppler shift, we tried both Gaussian and Voigt functions to fit each galaxy spectrum near the Na D line. We found that Voigt profiles reproduce the shapes of the Na D lines markedly better. Many of late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related with star formation-caused gas outflow. On the contrary, early-type NEOs do not show any notable doppler component, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related with ISM activities but purely stellar in origin.

  • PDF

An Ellerman bomb-associated surge observed by the FISS/NST

  • Yang, Hee-Su;Chae, Jong-Chul;Kim, Yeon-Han;Cho, Il-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • We observed a surge associated with an Ellerman bomb using the Fast Imaging Solar Spectrograph(FISS) of the New Solar Telescope at Big Bear Solar Observatory. The surge was seen in absorption and varied rapidly both in H alpha and Ca II 8542 line. It originated from the Ellerman bomb, and was impulsively accelerated to 20km/s of the blueshift(upward) motion. Then the gradual change from blueshift of 20km/s to redshift of 40km/s occurred in 20 minutes. Based on the measured line-of-sight velocities, we estimated the material reached up to about 5,000km height. We inferred physical parameters of the surge by adopting the cloud model, and found that the temperature of the surge material was about 25,000K and the non-thermal velocity was about 10km/s. Our results suggest that the surge might be heated intensely after it was ejected from the Ellerman bomb.

  • PDF

Observation of an Ellerman bomb and its associated surge with the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Yang, Heesu;Chae, Jongchul;Park, Hyungmin;Maurya, Ram Ajor;Cho, Kyuhyun;Kim, Yeon-Han;Cho, Il-Hyun;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.111.2-111.2
    • /
    • 2012
  • We observed an Ellerman bomb(EB) and its associated surge using the Fast Imaging Solar Spectrograph(FISS) and the broadband TiO filter of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. As is well-known, the EB appears as a feature that is very bright at the far wings of the H alpha line. The lambdameter method applied to these wings indicates that the EB is blue-shifted up to 6km/s in velocity. In the photospheric level below the EB, we see rapidly growing "granule-like" feature. The transverse velocity of the dark lane at the edge of the "granule" increased with time as reached a peak of 6km/s, at the time of the EB's occurrence. The surge was seen in absorption and varied rapidly both in the H alpha and the Ca II 8542 line. It originated from the Ellerman bomb, and was impulsively accelerated to 20km/s toward us(blueshift). Then the velocity of the surge gradually changed from blueshift of 20km/s to redshift of 40km/s. By adopting the cloud model, we estimated the temperature of the surge material at about 27000K and the non-thermal velocity at about 10km/s. Our results shed light on the conventional idea that an EB results from the magnetic reconnection of an emerging flux tube and pre-existing field line.

  • PDF

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono;Novan Purwanto;Desy Mekarsari;Isnaeni;Markus Diantoro;Riser Fahdiran;Yoga Divayana;Anggara Budi Susila
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Excitation Energy Induced S-shaped PL behavior in Graphene Quantum Dots

  • Jang, Min-Ho;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.351.2-351.2
    • /
    • 2016
  • Graphene quantum dots (GQDs) have attracted much attention because of various advantages such as cost-effectiveness of synthesis, low toxicity, and photostability. The origins of photoluminescence (PL) in GQDs were suggested as the intrinsic states for localized sp2 carbon domains and the extrinsic states formed by oxygen-functional groups.[1,2] Nevertheless, it is still unclear to understand the information of electric band structure in GQD. Here, we observed excitation energy induced S-shaped PL behavior. The PL peak energy position shows an S-shaped shift (redshift-blueshift-redshift) as function of the excitation wavelengths. From various samples, we only observed S-shaped PL shift in the GQDs with both luminescent origins of intrinsic and extrinsic states. Therefore, this S-shaped PL shift is related to different weight of intrinsic and extrinsic states in PL spectrum depending on the excitation wavelengths. This would be the key result to understand the electric band structure of the GQDs and its derivatives.

  • PDF

Generation of Si-O-C Bond without Si-$CH_3$ Bond in Hybrid Type SiOC Film

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film had the broad main band of $880\sim1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the peak position of the main bond in the infrared spectra moved to high frequency according to the increasing of an BTMSM flow rate. So the increment of the alkyl group induced the C-H bond condensation in the film, and shows the blueshift in the infrared spectra. In the case of P5000 system of Applied Materials Corporation, the strong bond of Si-CH3 bond in precursor does not enough to dissociated and ionized, because low plasma energy due to the capactive coupled CVD. Therefore, there was the sharp peak of Si-$CH_3$ bond at $1252cm^{-1}$.

  • PDF

PHASTE-AND INCLINATION-DEPENDENT LINE PROFILES OF 32 CYGNI (32 CYGNI의 공전궤도 위상과 궤도면 기울기에 따른 선 윤곽)

  • 김미경;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 1992
  • The line profiles of 32 Cyg have been calculated by integrating the equation of transfer numerically. In order to determine the source function the two level atom and complete redistribution were assumed and Sobolev approximation was used. The peaks of line profiles for the phase 0.99 and 0.70 showed redshift and blueshift, respectively. The line profiles had dependence on the inclination of orbital plane. The result with small inclination showed higher flux of line profile.

  • PDF

Electrical and Optical properties of B-doped ZnO films Deposited by RF Magnetron Sputtiering (RF 마그네트론 스퍼터링법으로 증착한 B-doped ZnO 박막의 전기 및 광학적 특징)

  • 임주수;이재신
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 1998
  • B-doped ZnO thin films on glass substrates were prepared by sputtering the ceramic targets which had been prepared by sintering disks consisting of ZnO and various amounts of B2O3 While pure ZnO films show-ed a c-axis oriented growth the B-doping retarded the prefered orientation and grain growth of the film. Electron concentrations for undoped and B-doped ZnO films were on the order of 7.8${\times}$1018 cm-3 and 5${\times}${{{{ {10 }^{20 } }} c{{{{ {m }^{-3 } }} respectively. The electron mobility however decreased with the B-doping concentration. Optical meas-urements on the films showed that the average transmittance in the visible range was higher than 85% The measurements also indicated a blueshift of the absorption edge with doping.

  • PDF

bandgap engineering of MgZnO thin films by co-sputtering (co-sputtering법으로 증착된 $Zn_{1-x}Mg_xO$ 박막의 밴드갭 엔지니어링)

  • Gang, Si-U;Kim, Yeong-Lee;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.47-48
    • /
    • 2007
  • 본 실험에서는 MgO (99.999%)와 ZnO (99.999%)의 두가지 타겟을 사용한 RF co-스퍼터링법을 이용하여 p-type Si (100) 기판 위에 $Zn_{1-x}Mg_xO$ 박막을 증착 하였다. ZnO 타겟의 RF-power은 고정시키고 MgO 타겟의 RF-power를 조절함으로써 Mg 함량을 조절하였다. EDX분석을 통해 MgO RF-power의 증가에 따라 고용되는 Mg의 함량이 증가함을 알 수 있었다. 또한 MgZnO내 Mg 함량이 높아짐에 따라 c-축 격자상수가 감소하는 것을 XRD분석을 통해 알 수 있었고, MgO기반의 2차상은 형성되지 않았다. PL 측정을 통해 Mg함량이 증가 할수록 UV 영역의 파장의 강도는 감소하고 UV 파장의 위치는 blueshift되는 것을 관찰 할 수 있었다.

  • PDF