• 제목/요약/키워드: Blue organic light-emitting diodes

검색결과 141건 처리시간 0.03초

Spirobifluorene 그룹을 포함하는 새로운 청색 발광 재료의 전계발광 (Electroluminescence Properties of Novel Blue-Emitting Materials Based on Spirobifluorene)

  • 박선우;이하윤;권혁민;;박상신;이승은;박종욱
    • 공업화학
    • /
    • 제34권1호
    • /
    • pp.94-97
    • /
    • 2023
  • BTPSF와 BDTSF는 유기발광다이오드용 스파이로플루오렌 모이어티를 기반으로 하는 새로운 청색 발광 물질로 성공적으로 합성되었다. BTPSF와 BDTSF는 촉매를 사용하지 않고 Diels-Alder 반응을 통해 합성하여 고순도를 얻었다. 합성된 물질의 광발광 스펙트럼은 용액 상태에서 약 381, 407 nm, 필름 상태에서 각각 395, 434 nm의 최대 발광 파장을 나타내어 자외선과 짙은 청색 발광색을 나타냈다. 합성된 BDTSF 물질은 non-doped 소자의 EML로 적용되었으며, 전류 효율은 0.61 cd/A이다.

Efficient Organic White Light-Emitting Device Utilizing SAlq, A Novel Blue Light-Emitting Material

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.773-776
    • /
    • 2002
  • Efficient organic white light-emitting diodes are fabricated by doping [bis(2-methyl-8-quinolinolato) (tripheny-siloxy)aluminium (III)] (SAlq), a blue-emitting layer, with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8-yl)vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 enables to obtain a balanced white light-emission. A device with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nm)/AI shows emission peaks at 456 nm and 482 nm from SAlq and at 570 nm from DCM2. The white light-emitting device shows an external quantum efficiency of about 2.3 %, a luminous efficiency of about 2.4 lm/W, and the CIE chromaticity coordinates of (0.32, 0.37) at 100 cd/m^2. A maximum luminance of about 23,800 cd/m^2. is obtained at 15 V and the current density of 782 mA/cm^2.

  • PDF

Blue organic light emitting diodes with carbazole based small molecules and color tunning by controlled side group

  • 김용범;안영주;박지호;강민웅;우형석;박종욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.514-516
    • /
    • 2003
  • We have fabricated an air stable blue emitting organic electroluminescent devices (OLEDs) with a carbazole based emitting molecule, Bis(3-N-ethylcarbazolyl)terephthalidene (BECP). Our device emits strong blue at 472 nm with the luminance efficiency of near 1 lm/W at a voltage and current density of 8 V and 5.7 mA/cm2, respectively, reaching the brightness up to 5000 cd/m2 at 270 mA/cm2. Finally, in order to tune the emission color from blue to green, we have used Bis(3-N-ethylcarbazolyl)cynoterephthalidene (BECCP), a derivative of BECP by adding cyno group in side chain, and compared the electroluminscence (EL) of OLEDS prepared by BECCP to that of BECP based OLEDs.

  • PDF

유기발광다이오드를 이용한 Photobiomodulation 기반 스킨케어 효과 (Photobiomodulation-based Skin-care Effect of Organic Light-emitting Diodes)

  • 김홍빈;정혜정;진석근;이병일;안재성
    • 한국광학회지
    • /
    • 제32권5호
    • /
    • pp.235-243
    • /
    • 2021
  • Photobiomodulation (PBM) 치료법은 특정 파장대역의 광원이 미토콘드리아에서 ATP 생성을 촉진하는 현상을 이용하는 치료법으로서 상처 치유, 염증 감소, 통증 완화 효과가 있는 것으로 알려져 생물 및 의학 분야에서 많은 관심을 받고 있다. PBM 치료법에 대한 연구는 주로 레이저, 발광다이오드(LED)를 광원으로 사용하였고, 유기발광다이오드(OLED)가 가지는 장점에도 불구하고 PBM 치료법에 사용된 사례는 제한적이다. 본 연구에서는 적색(λ = 620 nm), 녹색(λ = 525 nm), 청색(λ = 455 nm) OLED 조명모듈을 사용하여 PBM에 의한 피부관리 효과를 분석하고 LED에 의한 PBM 효과와 비교하였다. OLED 조명모듈의 PBM에 의한 피부미용효과는 적색 OLED 조명모듈에 의한 collagen type 1 합성량 증가, 녹색 OLED 조명모듈에 의한 melanin 합성 억제, 청색 OLED 조명모듈에 의한 nitric oxide 생성 억제를 각각 측정하여 입증되었다.

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF

전면 유기 발광 다이오드의 각도에 따른 발광 패턴 연구 (Angular dependence of emision pattern in top-emission organic light-emitting diodes)

  • 주현우;목랑균;김태완;장경욱;송민종;이호식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.277-278
    • /
    • 2009
  • We have studied an angular dependence of emission pattern of top-emssion organic light-emitting diodes (TEOLED). Device structure is Al(100nm)/TPD(40nm)/$Alq_3$(60nm)/LiF(0.5nm)/Al(2nm)/Ag(30nm). N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) and tris-(8-hydroxyquinoline) aluminium ($Alq_3$)were used as a hole transport layer and emission layer, respectively. Organic layers and cathode were thermally evaporated at $2\times10^{-5}$torr. The evaporation rate of the organic material was maintained to be $1.5\sim2.0{\AA}/s$, and that of metal layer to be $0.5\sim5{\AA}/s$. A transmittance of a cathode electrode(Al/Ag) in visible region is about 25~30%. In order to measure view-angle dependent intensity, electroluminenscence spectra of the device at each angle were integrated. Angle dependent emission spectra of the device do not show blue shift. Emission intensity of the device that the going straight characteristic is stronger the bottom-emission organic light-emitting diodes is shown.

  • PDF

Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED

  • Kim, Si Hyun;Lee, Song Eun;Kim, Yong Kwan;Lee, Seung Hee
    • 한국응용과학기술학회지
    • /
    • 제34권3호
    • /
    • pp.562-567
    • /
    • 2017
  • The organic light-emitting diodes are fabricated with six anthracene derivatives containing simple substituents such as phenyl or naphthyl group. The device structure is as in the following: Indium tin oxide (ITO) (180 nm)/4,4-4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (2-TNATA) (30 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl-1-amino] biphenyl (NPB) (20 nm)/Emitting compound (30 nm)/2,2',2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benz-imidazole) TPBi (40 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm). In the emitting layer the anthracene derivatives are used without any dopant. All the six devices show blue emissions. Among the tested diodes, the one with 9-(2-naphthyl)-10-(p-tolyl) anthracene (2-NTA) exhibited luminous efficiency, power and external quantum efficiencies of 3.26 cd/A, 0.98 lm/A, 2.8 % at $20mA/cm^2$.

청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성 (Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes)

  • 임병관;서정현;백경갑;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.

적색과 청색 형광 물질을 사용한 백색 적층 OLED (White Tandem Organic Light-Emitting Diodes Using Red and Blue Fluorescent Materials)

  • 박찬석;공도훈;강주현;윤성혁;주성후
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.115-120
    • /
    • 2015
  • We studied white tandem organic light-emitting diodes using red and blue fluorescent materials. White 2 units tandem OLEDs were fabricated using $Alq_3$:Rubrene (3 vol.% 5 nm) and SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). The device with $Alq_3$ : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) showed yellowish white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.442, 0.473) at $1,000cd/m^2$, and variation of CIE coordinates was low with ($0.44{\pm}0.002$, $0.472{\pm}0.001$) from 500 to $3,000cd/m^2$. White 3 units tandem OLEDs were fabricated by additory stacking the blue or white layer as EML. CIE coordinates of 3 units tandem OLEDs with stacked blue and white layer was low variation of ($0.293{\pm}0.008$, $0.36{\pm}0.005$) and ($0.412{\pm}0.002$, $0.423{\pm}0.001$) from 500 to $3,000cd/m^2$, respectively. Our findings suggest that stacked OLED was possible to controlling CIE coordinates and producing excellent color stability.