• 제목/요약/키워드: Blue organic light-emitting diodes

검색결과 141건 처리시간 0.033초

Efficient White Phosphorescent Organic Light-emitting Diodes for Solid-State Lighting Applications Using an Exciton-confining Emissive-Layer Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Lee, Jun-Yeob;Kang, Dong-Min;Yuanc, Wei;Kwon, Soon-Ki;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • 제10권2호
    • /
    • pp.92-95
    • /
    • 2009
  • Highly efficient blue and white phosphorescent organic light-emitting diodes (PHOLEDs) with an exciton-confining structure were investigated in this study. Effective charge confinement was achieved by stacking two emitting layers with different charge-transporting properties, and blue PHOLEDs with a maximum luminance efficiency of 47.9 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2')picolinate (FIrpic) as an electrophosphorescent dopant. Moreover, when the optimized green and red emitting layers were sandwiched between the two stacked blue emitting layers, white PHOLEDs (WOLEDs) with peak external and luminance efficiencies of 19.0% coupling technique.and 54.0 lm/W, respectively, were obtained without the use of any out-coupling technique.

The Optimization of Efficient White Organic Light-Emitting Diodes Using a Blue Fluorescent and a Red Phosphorescent Dopant

  • Seo, Ji-Hoon;Kim, Jun-Ho;Seo, Ji-Hyun;Hyung, Gun-Woo;Park, Jung-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1470-1473
    • /
    • 2007
  • We have demonstrated the optimization of white organic light-emitting diodes with two separated emissive layers using a blue fluorescent and a red phosphorescent dopant. The maximum luminous efficiency of the devices showed 7.93, 9.70, 11.8, and 14.3 cd/A. The $CIE_{xy}$ coordinates also showed (x = 0.33, y = 0.36), (x = 0.33, y = 0.35), (x =0.31, y = 0.35), and (x = 0.29, y = 0.36) at 6V, respectively.

  • PDF

White Organic Light-emitting Diodes using the Tandem Structure Incorporating with Organic p/n Junction

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제8권2호
    • /
    • pp.20-24
    • /
    • 2007
  • Efficient white organic light-emitting diodes are fabricated with the blue and red electroluminescent (EL) units electrically connected in a stacked tandem structure by using a transparent doped organic p/n junction. The blue and red EL units consist of the light-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi) and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j] quinolizin-8-yl)vinyl]-4H-pyran) (DCM2) doped tris(8-hydroxyquinoline) aluminum $(Alq_3)$, respectively. The organic p-n junction consists of ${\alpha}-NPD$ doped with $FeCl_3$ (15 % by weight ratio) and $Alq_3$ doped with Li (10 %). The EL spectra exhibit two peaks at 448 and 606 nm, resulting in white light-emission with the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.24). The tandem device shows the quantum efficiency of about 2.2 % at a luminance of 100 $cd/m^2$, higher than individual blue and red EL devices.

유기 발광체의 에너지 준위 및 전자 상태 연구 (A Study on Energy Levels and Electron States of Organic Light-Emitting Materials)

  • 김영관;김영식;서지훈
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.299-305
    • /
    • 2005
  • In this study, we designed color of tunable and high efficient organic materials using the quantum dynamics and the semi-empirical calculation, and applied this results to the fabrication of organic light-emitting diodes. Also we optimized the molecular structure of phosphorescent materials and the energy transfer from a host to a dye which makes organic light-emitting diodes improve. Using quantum dynamics method, the molecular structures of ligand only and the whole metal chelate were optimized, and these energy levels were calculated. From this test results, we could understand the emission mechanism of phosphors with various ligands as well as design the proper ligands reducing the T-T annihilation and the carrier lifetime. We also could design ligands with various colors using this test method.

The Spacer Thickness Effects on the Electroluminescent Characteristics of Hybrid White Organic Light-emitting Diodes

  • Seo, Ji-Hoon;Park, Jung-Sun;Seo, Bo-Min;Kim, Young-Kwan;Lee, Kum-Hee;Yoon, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권6호
    • /
    • pp.208-211
    • /
    • 2009
  • The authors have demonstrated the various characteristics of hybrid white organic light-emitting diodes (HWOLED) using fluorescent blue and phosphorescent red emitters. We also demonstrated that two devices showed different characteristics in accordance with thickness of the 4,4′-N,N′-dicarbazole-biphenyl (CBP) spacer (CS) inserted between the blue and the red emitting layer. It was found that the device with a CS thickness of 70 $\AA$ showed a current efficiency 2.5 times higher than that of the control device with a CS thickness of 30 $\AA$ by preventing the triplet Dexter energy transfer from the red to the blue emitting layer. The HWOLED with the CS thickness of 70 $\AA$ exhibited a maximum luminance of 24500 cd/$m^2$, a maximum current efficiency of 42.9 cd/A, a power efficiency of 37.5 lm/W, and Commission Internationale de I'Eclairage coordinates of (0.37, 0.42).

Charge Balance in High Efficiency Blue Phosphorescent Organic Light Emitting Diodes

  • Chopra, Neetu;Lee, Jae-Won;So, Franky
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.184-187
    • /
    • 2009
  • In this paper, we study effect of charge balance on performance of blue phosphorescent organic light emitting diodes (OLEDs). Charge balance determines the location of recombination zone in the OLEDs. By tuning the charge balance in iridium (III) bis[(4,6-difluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) based blue phosphorescent organic light-emitting devices (PHOLEDs) with a high mobility and high triplet energy electron transporting material, we were able to achieve a high current efficiency of 60 cd/A which is a 3X improvement over previous devices with 3,5'-N,N'-dicarbazole-benzene (mCP) host.

  • PDF

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Improvement of electroluminescent efficiency by using interfacial exciton blocking layer in blue emitting electrophosphorescent organic light emitting diodes

  • Kim, Ji-Whan;Kim, Joo-Hyun;Yoon, Do-Yeung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1381-1382
    • /
    • 2005
  • We report improved efficiency in blue electrophosphorescent organic light emitting diodes by introducing an interfacial exciton blocking layer between light emitting layer (EML) and hole transport layer (HTL). Iridium(III) bis [(4,6-di-fluorophenyl)- pyridinato -N,C2']picolinate (FIrpic) was used as blue phosphorescent dopant and JHK6-3 with carbazole and electron transporting group as host and also as the interfacial layer, resulting in drastic increase in quantum efficiency.

  • PDF

Color stable and efficient white organic light emitting diodes with phosphorescent emitters

  • Lee, Hyun-Koo;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.415-417
    • /
    • 2009
  • Color stable and efficient two wavelength white organic light emitting diodes (OLEDs) were fabricated using a iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,$C^2$'] picolinate (FIrpic) as a blue phosphorescent emitter and a bis(1-phenylisoquinolinato-$C^2$,N)iridium (acetylacetonate) ((piq)$_2$Ir(acac)) as a red phosphorescent emitter. The emitting layers consist of two blue emitting layers and one red emitting layer which is between the two blue layers. The device reaches the peak efficiencies of 7.84 % and 10.3 cd/A at 0.6 mA/$cm^2$. Furthermore, there was little change of EL spectra according to current density change in the device.

  • PDF

정공수송층의 변화에 따른 청색 유기 발광 소자의 특성 (Characteristics on the Variation of Hole transporting layer of Blue organic light-emitting diodes)

  • 김구영;박정현;서지훈;이금희;윤승수;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.434-435
    • /
    • 2007
  • We have demonstrated the characteristics on the variation of hole transporting layer in blue organic light-emitting diodes (OLEDs) using new blue fluorescent emitter. We fabricated two types of hole transporting layer structures that one is 4,4',4"-Tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2-TNATA) of $600{\AA}$ as a hole injection layer, N,N'-diphenyl-N,N'- (2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) of $200{\AA}$ as a hole transporting layer and another device is NPB of $500{\AA}$ without the 2-TNATA. The devices without the 2-TNATA showed improved characteristic of the luminance and efficiency.

  • PDF