• Title/Summary/Keyword: Blue host materials

Search Result 84, Processing Time 0.026 seconds

Highly efficient blue phosphorescent organic light-emitting device using new host materials

  • Seo, Yu-Seok;Kim, Tae-Yong;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.817-819
    • /
    • 2009
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (PHOLEDs) with simplified architectures using new host materials. The Blue PHOLED with new host:FIrpic emitting layer exhibits a maximum luminance efficiency of 34 cd/A and a low operating voltage 5 V at a high luminance of 1212 cd/$m^2$.

  • PDF

Study of Deep Blue Organic Light-Emitting Diodes Using Doped BCzVBi with Various Blue Host Materials

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.85-88
    • /
    • 2010
  • Deep blue organic light emitting diodes (OLEDs) were fabricated using 5 wt.% doped BCzVBi with various blue host materials such as NPB, DPVBi, MADN and TPBi. A blue OLED device, using DPVBi as host material, was constructed via NPB ($500\;{\AA}$) / DPVBi:BCzVBi ($200\;{\AA}$) / Bphen ($300\;{\AA}$) / LiF ($20\;{\AA}$) / Al ($1,000\;{\AA}$) and it shows a maximum luminescence of $4,838\;cd/m^2$, a current density of $32.7\;mA/cm^2$, a luminous efficiency of 3.3 cd/A and CIExy coordinates of (0.19, 0.15) at 4.5 V whereas the luminous efficiencies and CIExy coordinates of other blue OLEDs using NPB, MADN and TPBi as host materials have 1.1, 2.6 and 2.0 cd/A and (0.15, 0.11), (0.15, 0.10) and (0.15, 0.10), respectively. Energy transfer mechanisms between BCzVBi and its host materials were discussed with an energy band structure of host materials.

Electroluminescence Properties of New Spiro(fluorene-benzofluore)-Type Blue Host Materials (새로운 Spiro[fluorene-benzofluore]계 청색 호스트 물질의 유기전계발광 특성)

  • Jeon, Young-Min;Lee, Hyun-Seok;Lee, Chil-Won;Kim, Jun-Woo;Chang, Gi-Geun;Gong, Myoung-Seon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.29-30
    • /
    • 2008
  • New spiro-type host materials, 5'-phenylnaphthyl-spiro[fluorene-7,9'-benzofluorene](BH-lPN) and 5',6-bis(phenylnaphthyl)-spiro[fluorene-7,9'-benzofluorene](BH-6PN) were designed and successfully prepared by the Suzki reaction. The EL characteristics of BH-1PN as blue host material doped with blue dopant materials, BD-1 were evaluated and compared with the existing host MADN:dopant BD-1 system. The structure of the device is ITO/DNTPD/NPB/Host:5% dopant/Alq3/Al-LiF. The device obtained from BH-lPN doped with BD-1 showed a good color purity and efficiency, on the other hand luminance and current-density characteristics are worse than that of MADN doped with BD-1.

  • PDF

New Fluorescent Blue OLED Host and Dopant Materials Based on the Spirobenzofluorene

  • Lee, In-Ho;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1475-1482
    • /
    • 2011
  • New spiro[benzo[c]fluorene-7,9'-fluorene] (SBFF)-based blue host materials, 9-phenyl-SBFF (BH-4P) and 5,9-diphenyl-SBFF (BH-6DP), were successfully prepared by spiro-formation of 9-phenyl-7H-benzo[c]fluoren-7-one with 2-bromobiphenyl via lithiation and reaction of 5,9-dibromo-SBFF with phenylboronic acid through the Suzuki reaction, respectively. Diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]-amine (BD-1) and N,N-diphenyl-N',N'-diphenyl-SBFF-5,9-diamine (BD-6DPA) were used as dopant materials. Blue OLEDs with the configuration ITO/N,N'-bis-[4-(di-m-tolylamino)phenyl]-N,N'-diphenylbiphenyl-4,4'-diamine (DNTPD)/bis[N-(1-naphthyl)-N-phenyl]benzidine (NPB)/host:5% dopant/SFC-137/Al-LiF were prepared from the two host materials doped with BD-1 and BD-6DPA dopants and the devices composed of BH-4P and BH-6DP doped with BD-6DPA showed blue EL spectra at 458 and 463 nm at 7 V and luminance efficiencies of 4.58 and 4.88 cd/A, respectively.

Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • We investigated the light-emitting performances of blue phosphorescent organic light-emitting diodes, known as PHOLEDs, by incorporating an N,N'-dicarbazolyl-3,5-benzen interlayer between the hole transporting layer and emitting layer (EML). We found that the effects of the introduced interlayer for triplet exciton confinement and hole/electron balance in the EML were exceptionally dependent on the host materials: 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, 9-(4-tert-butylphenyl)-3,6-ditrityl-9H-carbazole, and 4,4'-bis-triphenylsilanyl-biphenyl. When an appropriate interlayer and host material were combined, the peak external quantum efficiency was greatly enhanced by over 21 times from 0.79% to 17.1%. Studies on the recombination zone using a series of host materials were also conducted.

Deep Blue Fluorescent Host Materials Based on a Novel Spiro[benzo[c]fluorene-7,9'-fluorene] Core Structure with Side Aromatic Wings

  • Lee, In-Ho;Seo, Jeong-A;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2287-2294
    • /
    • 2012
  • Deep blue fluorescent host materials based on a novel spiro[benzo[c]fluorene-7,9'-fluorene] core structure with side aromatic wings in the 5- and 9-positions, namely, 5,9-di(naphthalen-2-yl)spiro[benzo[c]fluorene-7,9'-fluorene] (DN-SBFF), 5,9-bis(4-t-butylphenyl)spiro[benzo[c]fluorene-7,9'-fluorene] (BP-SBFF), and 5,9-bis(4-fluorophenyl)spiro[benzo[c]fluorene-7,9'-fluorene] (FP-SBFF), were designed and successfully prepared using the Suzuki reaction. The physical properties of these materials and their EL characteristics as blue host materials doped with N,N,N',N'-tetraphenylspiro[benzo[c]fluorene-7,9'-fluorene]-5,9-diamine (TPA-SBFF) were investigated. The device used comprised ITO/N,N'-diphenyl-N,N'-bis[4-(phenyl-m-tolyl-amino)phenyl]-biphenyl-4,4'-diamine (DNTPD)/N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB)/(FP-SBFF):dopant x%/tris(8-hydroxyquinoline)aluminum ($Alq_3$)/LiF. The device obtained using FP-SBFF doped with TPA-SBFF showed high color purity (0.13, 0.18) and an efficiency of 6.61 cd/A at 7 V.

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

A Novel Polymer Host for Highly Efficient Solution-Processed Blue Organic Light-Emitting Diode

  • Jou, Jwo-Huei;Lin, Cheng-Wei;Lai, I-Ming;Wang, Wei-Ben;Chiu, Chuan-Huan;Grigalevicius, Saulius;Wu, Chung-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.803-805
    • /
    • 2009
  • A highly efficient blue organic light-emitting diode (OLED) was fabricated by using a novel polymer host, poly[3-(carbazol-9-ylmethyl)-3-methyloxetane]. The resultant solution-processed device showed a markedly high efficiency of 29.7 lm/W at 100 cd/$m^2$ by doping 24 wt% blue dye bis(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxy pyridyl) iridium (III).

  • PDF

Highly efficient deep-blue electroluminescence using doped PCVtPh with a new host material

  • Park, Jeong-Keun;Lee, Kum-Hee;Kim, Seul-Ong;Park, Jung-Sun;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.775-778
    • /
    • 2009
  • Novel blue host material, 4,4'-(dinaphthalen-2-yl)-1,1'-binaphthyl (DNBN), was designed and synthesized for OLEDs. In order to test the electroluminescent properties of DNBN, DNBN was used as the host materials for a blue emitter, PCVtPh. The device exhibited deep-blue emission with the CIEx,y coordinates (x=0.15, y=0.08) at 8.0 V, a luminous efficiency of 1.66 cd/A, a power efficiency of 0.77 lm/W and an external quantum efficiency of 2.30 % at 20 mA/$cm^2$, respectively.

  • PDF

Correlation between host materials and device performances of phosphorescent white organic light-emitting diodes with blue/orange/blue stacked emitting structure

  • Joo, Chul-Woong;Kim, Sung-Hyun;Yook, Kyoung-Soo;Jeon, Soon-Ok;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.439-442
    • /
    • 2008
  • A mixed host structure of TCTA and TPBI was used in orange emitting layer and host composition was critical to device performances of PHWOLEDs. PHWOLEDs with TPBI host in orange emitting layer showed high quantum efficiency of 10.3 % at $1000\;cd/m^2$ with little change of CIE coordinates of (0.32, 0.34) from $100\;cd/m^2$ to $10,000\;cd/m^2$.

  • PDF