• Title/Summary/Keyword: Blue emitting material

Search Result 213, Processing Time 0.018 seconds

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

Change in Opto-electrical Characteristics in Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene] according to the Copolymerization Ratio (Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene]에서 공중합 비율에 따른 전기 광학적 특성의 변화)

  • 신선호;정애영;김주현;이후성;김동표
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.399-405
    • /
    • 2001
  • Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene]s were synthesized in 2:1, 1:1, and 1:2 mole ratios, and organic electroluminescent devices were fabricated using the copolymers. The opto-electrical properties of the copolymers were studied by PL, EL spectra, I-V, and V-L curves of the organic electroluminescent devices in conjunction with the energy band diagrams which were obtained from the cyclic voltammogram and the electronic absorption spectra. The LUMO energy level of P(OT/FPT)(1:1) is the lowest as -3.35 eV. In the copolymers P(OT/FPT)(2:1) and P(OT/FPT)(1:1) the ${\lambada}_{max}$ in the PL and EL spectra red-shifted as the mole ratio of fluorophenyl group increased while in P(OT/FPT)(1:2) it showed a blue-shift. This indicates that the backbone chain is twisted due to the steric hinderance of the fluorophenyl group leading to shorter ${\pi}$-conjugation length. P(OT/FPT)(1:1) showed the highest EL intensity and the highest power efficiency among the three copolymers. In P(OT/FPT)(1:2) the roughness of the film surface causes unusually high local leakage current leading to the low efficiency of electroluminescence.

  • PDF

Porous silicon : a new material for microsensors and microactuators (다공질 실리콘: 새로운 마이크로센서 및 마이크로액추에이터 재료)

  • Min Nam Ki;Chi Woo Lee;Jeong Woo Sik;Kim Dong Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • Since the use of porous silicon for microsensors and microactuators is in the euly stage of study, only several application devices, such as light-emitting diodes and chemical sensors have so far been demonstrated. In this paper we present an overview of the present status of porous silicon sensors and actuators research with special emphasis on the applications of chemical sensors and optical devices. The capacitive type porous silicon humidity sensors had a nonlinear capacitance-humidity characteristic and a good sensitivity at higher humidity above $40\%RH$. The porous silicon $n^+-p-n^+$ device showed a sharp increase in current when exposed to an ethanol vapor. The $p^+-PSi-n^+$ diode fabricated on porous silicon diaphragm exhibited an optical switching characteristic, opening up its utility as an optical sensor or switch. The photoluminescence (PL) spectrum, taken from porous silicon under 365 nm excitation, had a broad emission, peaked at -610 nm. The electroluminescence(EL) from ITO/PSi/In LED had a broader spectrum with a blue shifted peak at around 535nm than that of the PL.