• Title/Summary/Keyword: Blown Asphalt

Search Result 11, Processing Time 0.027 seconds

Structures and Properties of Semi-blown Petroleum Asphalt (세미-브로잉 공정에서 석유 아스팔트의 구조, 물성 변화)

  • Min, Kyung Eui;Jeong, Han Mo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.664-671
    • /
    • 2011
  • The vacuum residue of petroleum refinery, i.e. asphalt, was modified through a non-catalytic air blowing process to prepare the semi-blown asphalt. Changes in composition, chemical structure, and physical properties of asphalt were examined. The result from the thin layer chromatography showed that the asphaltene content in asphalt was increased by the air blowing on account of the aromatization of aliphatic hydrocarbon and condensation. These changes in molecular structure were also confirmed by $^1H-NMR$, differential scanning calorimetry, and thermogravimetry. Because of the molecular structure changes, the penetration of asphalt was decreased and the softening point and the flash point of asphalt were increased.

Studies on the Bituminization Process of Radioactive Liquid Waste[I]

  • Lee, Sang-Hoon;Chun, Kwan-Sik;Lim, Eung-Keuk
    • Nuclear Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.213-222
    • /
    • 1975
  • Immobilization of the second-cycle radioactive liquid wastes from a Purex process was developed with the blown asphalt (manufactured by Kukdong Shell Oil Company Ltd) to eliminate the possibility that the radioactive materials will be redispersed into the environment. Attempts to incorporate these wastes directly into the asphalt martrices without any pretreatment were not successful, as it was observed that the sulphuric acid in the waste oxidised the asphalt. Hence, the waste was treated with caustic soda and made alkaline prior to bituminization, so that it was found that this pretreatment made the waste compatible to the asphalt matrices. The pure blown asphalt samples irradiated with doses of 4.0$\times$10$^{7}$ rad showed no evidence of volume increase. The suitable temperature for incorporation of the alkaline wastes into blown asphalt was 180-20$0^{\circ}C$. The Products containing 50 wt% salts represented the following good properties viz., volume reduction (about 1.4), homogeneity, teachability etc. During the period of 131 day $s^{l37}$Cs from products containing 40wt% salts was leached at rates ranging from 2.70$\times$10-4 to 8.27$\times$10-4g/cm2_day but the rate for $^{90}$ Sr was lower by one to two orders of magnitude by distilled water. The leaching rates for $^{137}$ Cs and $^{90}$ Sr by sea water were slightly lower than by distilled water. Both of the leaching rates decreased with increasing pH.H.

  • PDF

Properties of Bunker-C Residual Oil (번커-C 重油의 性狀)

  • Hong Sung Taik
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.17-21
    • /
    • 1967
  • For utilization of Bunker-C residual oil produced at KOCO., the auther tested the properties of vacuum fraction and blown asphalt, and as the result of it, (1) Vacuum fraction had so broad range of viscosity and high flash point that could be produced all kind of lublicating oil, but had to be dewaxed for high pour point, (2) Urea dewaxing was suitable to lighter fraction but not to heavier fraction, so, for heavier fraction, solvent dewaxing was needed. (3) Blown asphalt produced from vacuum residue had uniform relation between softening point and penetration in spite of broad change of blowing condition and adding of catalyst.

  • PDF

A Study on the Bituminization Process of Radiative Liquid Waste (II)

  • Lee, Sang-Hoon;Yoon, Myung-Hwan;Lee, Moon-Deuk
    • Nuclear Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.231-242
    • /
    • 1976
  • The effects of temperature and pressure of leaching water on the leaching of radionuclides from bitumen-waste products were studied. The principal results are as follows: The fraction of $^{90}$ Sr and $^{137}$ Cs leached for periods of up to 120 days at 8atm was 2.1$\times$10$^{-6}$ ($\textrm{cm}^2$/g)$^{-1}$ , day$^{-1}$ and 6.02$\times$10$^{-5}$ ($\textrm{cm}^2$/g)$^{-1}$ day$^{-1}$ respectively and at 5$^{\circ}C$, 1.7$\times$10$^{-5}$ ($\textrm{cm}^2$/g)$^{-1}$ day$^{-1}$ and 4.01$\times$10$^{-5}$ ($\textrm{cm}^2$/g)$^{-1}$ day$^{-1}$ respectively. These values were lower than those in atmospheric pressure and room temperature. No diffence in the leaching rate with sea and distilled water was observed for the bitumen-waste products containing 40wt% salts. It appears that these results could be saved by improving safety in the dumping of sea. The effect of the softening point of pure asphalt or bitumen-waste product by $^{60}$ Co irradiation was increased with increasing total dose. Irradiation of asphalts at a total dose of 5.8$\times$10$^{8}$ rad showed no evidence of volume and caused no swelling. The functional groups of blown asphalt by infrared spectra are also identified.

  • PDF

A Study on the Properties and Manufacture of Vinylester Resin Mixtures Used as Sealant of Insulator (단열재의 실링재로 사용되는 비닐에스테르 수지 혼합물의 제조 및 물성에 관한 연구)

  • Suh, Won-Dong;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.27 no.3
    • /
    • pp.174-182
    • /
    • 1992
  • Main components of manufactured sealant were vinylester resin, polybutadiene rubber, asphalt and inorganic filler. For manufactured sealant, liquid and cure properties were tested experimantally. It showed better mechanical properties at rubber content $5{\sim}15phr$. Blown asphalt represented better properties than streight asphalt, showed the highest cohesive strength at asphalt content $6{\sim}8phr$. Appropriate usage of filler was $60{\pm}2%$ of total components, and $Al(OH)_3$ showed better flame-retardancy than $CaCO_3$.

  • PDF

A Study of physical properties and application to new products from the Heavy Residual Feul oil as Raw Materials. (양산중질유의 대책에 따른 신제품 개발실용화에 관한 연구)

  • 김주항;강호근
    • Proceedings of the Korean Professional Engineer Association Conference
    • /
    • 1984.12a
    • /
    • pp.84-91
    • /
    • 1984
  • Heavy Residual Fuel oils is a mixture of reduced crude from crude unit, bottom products from vacuum and/or catalytic cracking unit with distillate to meet the specification and generally used as Heavy Fuel Oil for large combustion engines, boilers, etc…. But this study was made to investigate Heavy Residual Fuel oils for using as industrial raw material and resulted the following possibilties as valuable raw material as well as Heavy Fuel Oil. 1) Production of straight asphalt through vacuum distillation unit. 2) Using straight asphalt from vacuum distillation unit for manufacturing of Blown Asphalts, Cut Back Asphalts, Emulsified Asphalts and Asphalt Compound, etc…. 3) Using waxy oil side streams for manufacturing of raw oil to be Lube Oil base stocks through solvent dewaxing. 4) Production of lube base oils from dewaxed raw oil through chemical treatments. 5) Manufacturing of paraffine wax from slack wax to be produced as by product of dewaxing process.

  • PDF

Studies on physical properties and application to new products from Heavy Residual Fuel Oil as Raw Materials (양산중질유(量産重質油)를 원료(原料)로한 신제품(新製品) 개발실용화(開發實用化)를 위(爲)한 조사연구(調査硏究))

  • Kim, Ju-Hang;Kang, Ho-Ken;Herh, Dong-Sub
    • Elastomers and Composites
    • /
    • v.20 no.2
    • /
    • pp.115-131
    • /
    • 1985
  • Heavy residual fuel oils is a mixture of reduced crude from crude unit, bottom products from vacuum and/or catalytic cracking unit with distillate to meet the specification and generally used as heavy fuel oil for large combustion engines, boilers, etc$\cdots$. But this study was made to investigate heavy residual fuel oils for using as industrial raw material and resulted the following possiblities as valuable raw material as well as heavy fuel oil. 1) Production of straight asphalt through vacuum distillation unit. 2) Using straight asphalt from vacuum distillation unit for manufacturing of blown asphalts, cut back asphalts, emulsified asphalts and asphalt compound, rubber/asphalt sheet, etc$\cdots$. 3) Using waxy oil side streams for manufacturing of raw oil to be lube oil base stocks through solvent dewaxing. 4) Production of lube base oils and rubber process oils from dewaxed raw oil through chemical treatments. 5) Manufacturing of paraffine wax from slack wax to be produced as by product of dewaxing process.

  • PDF

Evaluation of the Properties of Wrapping Material of Steel Pipe for Water Supply (수도용 강관의 도복장 재료특성 평가에 관한 연구)

  • Lee, Hyun-Dong;Lee, Ji-Eun;Kwak, Phill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.331-338
    • /
    • 2008
  • Coal-tar enamel, blown asphalt and polyethylene have been used as wrapping materials of steel pipe in Korea. Currently, every manufacturer produces wrapped steel pipes with different materials and methods, and little research has been performed to get on wrapping methods and materials. In this research, properties of wrapping material of steel pipe used for water supply have been evaluated. All of the materials tested in this work were found to meet the standard. Among the wrapping materials of steel pipe tested, blown asphalt and coal-tar enamel were reasonable in price, and their mechanical properties were excellent. The quality of the wrapped steel pipes was being melted easily in organic solvent. When coated thick, the load of the steel pipes was higher than necessary. Tensile strength of cathode exfoliation and PE 3-layer wrapping method was excellent. The pulling intensity of T-Die PE 3-layer was stronger than PE fluidized in PE wrapping method. Cathode exfoliation area was smaller than PE fluidized. Mechanical property and thermo-property of T-Die PE 3-layer were excellent and its anti-chemical property was great. Liquid epoxy can change the property of coating materials depending on the hardening condition and resin selection. Polyurethane used in this test showed a less adhesive strength with steel pipes than epoxy. Moisture absorbance rate was higher than Epoxy's, however. To utilize polyurethane as wrapping materials, basic property of the matter should be improved followed by finding the best suited coating condition. The method of PE 3-layer by extrude method appeared to be the best in this study. However, identification of other wrapping materials requires further additional tests.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.