• Title/Summary/Keyword: Blowing Jet

Search Result 55, Processing Time 0.022 seconds

Effects of Periodic Local Forcing on a Turbulent Boundary Layer (주기적 국소교란이 난류 경계층에 미치는 영향)

  • Park, Sang-Hyun;Lee, In-Won;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

An Experimental Study of Film Cooling Characteristics at Supersonic Free Stream Conditions (초음속 주유동 환경에서의 막냉각 특성 시험 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.342-348
    • /
    • 2017
  • In this paper, film cooling characteristics at supersonic free stream conditions were examined experimentally by applying an IR-thermography. Film cooling experiments were carried out in a free-jet facility at Mach number of 3.0 and with unit Reynolds number of $42.53{\times}10^6$ and $69.35{\times}10^6$ using wedge shaped film cooling model which has a converging film cooling nozzle. Film cooling efficiency was calculated by measuring the surface temperature of PEEK(Polyether Ether Ketone) and the effects of angle of attack and blowing ratios on the film cooling efficiency were examined. The measured wall temperature was significantly reduced by the film cooling flow compared with the results without the film cooling flow. The usefulness of film cooling was also confirmed by the surface heat flux calculated using the surface temperature history of PEEK. As the blowing ratio increases the protected area of PEEK was also expanded along the direction of free stream and film cooling flow.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

Spinning of Petroleum based Isotropic Pitch by Melt-blown Method

  • Kim, Chan;Lee, Su-Hyun;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to $6{\mu}m$ by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with $10{\mu}m$ diameter were produced at throughput rate of $0.17g/min{\cdot}hole$ and at die temperature of $290^{\circ}C$.

  • PDF

Slopping Prediction using Analysis of Lance Behavior in BOF (랜스거동 분석을 이용한 슬로핑 예지기술)

  • Lim, Eun-Seop;Kim, Heung-Mook;Son, Boong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.31-35
    • /
    • 2001
  • Slopping deteriorates the productivity and the stability of operation in BOF refining process, and hence POSCO has developed methods to predict and prevent slopping. Specific equipment was developed to measure the change of the reacting force to the oxygen-blowing lance against oxygen jet and the force was gathered and analyzed with the flow rate of oxygen and the height of lance. From this study, it was found that the reacting force is strongly correlated to the slag foam height. Currently, the modeling of the relation of the slag foaming level and the vertically acted force to lance is being approached for predicting the slopping.

  • PDF

A numerical simulation on the effect of hole geometry for film cooling flow (홀 형상이 막 냉각 유동에 미치는 효과에 대한 수치 해석적 연구)

  • Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.849-861
    • /
    • 1997
  • In this study, the effect of hole geometry of the cooling system on the flow and temperature field was numerically calculated. The finite volume method was employed to discretize the governing equation based on the non-orthogonal coordinate with non-staggered variable arrangement. The standard k-.epsilon. turbulence model was used and also the predicted results were compared with the experimental data to validate numerical modeling. The predicted results showed good agreement in all cases. To analyze the effect of the discharge coefficient for slots of different length to width, the inlet chamfering and radiusing holes were considered. The discharge coefficient was increased with increment of the chamfering ratio, radiusing ratio and slot length to width and also the effect of radiusing showed better result than chamfering in all cases. In order to analyze the difference between the predicted results with plenum region and without plenum region, the velocity profiles of jet exit region for a various flow conditions were calculated. The normal velocity components of jet exit showed big difference for the low slot length to width and high blowing rate cases. To analyze the flow phenomena injected from a row of inclined holes in a real turbine blade, three dimensional flow and temperature distribution of the region including plenum, hole and cross stream with flow conditions were numerically calculated. The results have shown three-dimensional flow characteristics, such as the development of counter rotating vortices, jetting effect and low momentum region within the hole in addition to counter rotating vortex structure in the cross stream.

Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity (Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The present study aims at investigating the effectiveness of a new passive cavity flow control technique, sub-cavity. The characteristics of cavity flow oscillation with the device are compared with those with other control techniques tested previously, including a triangular bump and blowing jet. In the computation, the three-dimensional, unsteady Navier-Stokes equations governing the supersonic cavity flow are solved based on an implicit finite volume scheme spatially and multi-stage Runge-Kutta scheme temporally. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The present results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations, and the amplitude of the pressure oscillation can be reduced in the presence of a sub-cavity.

  • PDF

Control of the Pressure Oscillations in Supersonic Cavity Flows (초음속 공동유동에서 발생하는 압력변동의 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The present study describes unsteady flow phenomena generated in a supersonic flow passing over a rectangular cavity and suggests a way of control of pressure oscillation, doing harm to overall performance and stable operation of aerodynamic and industrial applications. The three-dimensional, unsteady, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme and large eddy simulation. The cavity flow are simulated with and without control methods, including a triangular bump and blowing jet installed near the leading edge of the cavity. The results show that the pressure oscillation is attenuated by both control techniques, especially near the trailing edge of cavity.

  • PDF