• Title/Summary/Keyword: Blowing Effectiveness

Search Result 55, Processing Time 0.021 seconds

A Study on the Combination of Blowing Ratio and Injection Angle in 2-Dimensional Film Cooling (2차원 막냉각의 적정 분사비와 분사각도의 조합에 관한 연구)

  • Son, Chang-Ho;Lee, Geun-Sik;Won, Young-Ho;Rho, Suk-Man;Lee, Jong-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.553-558
    • /
    • 2001
  • To find the effective combinations of blowing ratio and injection angle for a straight slot film cooling, film cooling characteristics was investigated using both flow visualization experiment and numerical simulation. Injection angles from $15^{\circ}\;to\;50^{\circ}$ and blowing ratios from 0.2 to 3.0 were selected for the simulation. Comparison between experimental and numerical results shows a good agreement, for the case of the injection angle of $30^{\circ}$ and blowing ratio ranging from 0.55 to 2.0. Film cooling effectiveness was found to be an increasing function of blowing ratio. The effects of injection angle became prominent as the blowing ratio increases. An interesting phenomenon was found for the injection angle of $15^{\circ}$ : the lowest film cooling effectiveness for the blowing ratio smaller than 1.0, but the highest film cooling effectiveness for the blowing ratio greater than 2.0 within wide range of downstream region. There exist optimum injection angles corresponding to maximum film cooling effectiveness : injection angle of $25^{\circ}$ for the blowing ratio from 0.2 to 2.0, and injection angle of $15^{\circ}$ for the blowing ratio of 3.0. Present study provides a design combination among film cooling effectiveness, blowing ratio, and injection angle.

  • PDF

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • Park, S.D.;Lee, K.S.;Kwak, J.S.;Cha, B.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.53-58
    • /
    • 2008
  • Film cooling effectiveness on a flat plate was measured with pressure sensitive paint. The pressure sensitive paint(PSP) changes the intensity of its emissive light with pressure and the characteristic was used in film cooling effectiveness measurement. The film coolants were air and nitrogen, and by comparing the intensity of PSP coated surface with each coolant, the film cooling effectiveness was calculated. Three blowing ratio of 0.5, 1, and 2 were tested with two mainstream turbulence intensities. Results clearly showed the effect of blowing ratio and mainstream turbulence intensity. As the blowing ratio increases, the film cooling effectiveness was decreased near the film cooling holes. However, the film cooling effectiveness far downstream from the injection hole was higher for higher blowing ratio. As the mainstream turbulence intensity increased, the film cooling effectiveness was decreased at far downstream from the injection hole.

  • PDF

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint (압력감응페인트를 이용한 평판에서의 막냉각 계수 측정)

  • Park, Seoung-Duck;Lee, Ki-Seon;Kim, Hark-Bong;Kwak, Jae-Su;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-72
    • /
    • 2008
  • The film cooling effectiveness on a flat plate measured by pressure sensitive paint technique. Six film cooling hole were fabricated on a flat plate with 30 degree angle with respect to the surface and three blowing ratios of 0.5, 1, and 2 were tested. Results showed that PSP technique successfully evaluated the distribution of film cooling effectiveness and showed similar results with references. The film cooling effectiveness near the film cooling holes was higher for lower blowing ratio case. As the blowing ratio was increased, the film cooling effectiveness near the film cooling hole decreased due to the lift off of the coolant. At far downstream, the film cooling effectiveness for higher blowing ratio was higher due to the coolant reattachment.

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

Effect of Hole Shapes, Orientation And Hole Arrangements On Film Cooling Effectiveness

  • Jindal, Prakhar;Roy, A.K.;Sharma, R.P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2016
  • In this present work, the effect of hole shapes, orientation and hole arrangements on film cooling effectiveness has been carried out. For this work a flat plate has been considered for the computational model. Computational analysis of film cooling effectiveness using different hole shapes with no streamwise inclination has been carried out. Initially, the model with an inclination of $30^{\circ}$ has been verified with the experimental data. The validation results are well in agreement with the results taken from literature. Five different hole shapes viz. Cylindrical, Elliptic, Triangular, Semi-Cylindrical and Semi-Elliptic have been compared and validated over a wide range of blowing ratios. The blowing ratios ranged from 0.67 to 1.67. Later, orientation of holes have also been varied along with the number of rows and hole arrangements in rows. The performance of film cooling scheme has been given in terms of centerline and laterally averaged adiabatic effectiveness. Semi-elliptic hole utilizes half of the mass flow as in other hole shapes and gives nominal values of effectiveness. The triangular hole geometry shows higher values of effectiveness than other hole geometries. But when compared on the basis of effectiveness and coolant mass consumption, Semi-elliptic hole came out to give best results.

Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole (변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성)

  • Rhee, Dong Ho;Kim, Byunggi;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.