• Title/Summary/Keyword: Blower Control

Search Result 107, Processing Time 0.032 seconds

Optimal Oil Temperature at the Main Transformer Cooling System (주변압기 냉각시스템의 최적오일온도)

  • Han, Do-Young;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.955-960
    • /
    • 2009
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. Mathematical models of a main transformer cooling system were developed. These include models for the main transformer, the oil pump, the oil cooler, and the blower. The optimal oil temperature algorithm was also developed. This consists of the optimal setpoint algorithm and the control algorithm. A simulation program was developed by using mathematical models and the optimal oil temperature algorithm. Simulation results showed that the dynamic behavior of a main transformer cooling system was predicted well by mathematical models and a main transformer cooling system was controlled effectively by the optimal oil temperature algorithm.

  • PDF

Computation of theoretical design parameter of sin91e Phase SRM for a blower drives (송풍기 구동용 단상 SRM의 이론적 설계파라미터 산정)

  • Lee, Jong-Han;Lee, Chung-Won;Lee, Eun-Woong;Oh, Young-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.88-90
    • /
    • 2003
  • SRM has a characteristic of a robust, simple structure and wide operating ranges. So, recently it has studied and developed in many kinds and forms with the technology of power electronics and analysis and design by use of computer. Also, It is used in a very wide range of industrial applications. In particular, single phase switched reluctance motor has a merit in practical use because it has simple operating drives and control systems, very high energy density per unit volume comparing with three phase SRM. But it must have a starting device. In this paper design procedures of single phase SRM development for blower drives are presented. It is selected the design parameters by compared with design theory of general electric machine and poly phase SRM. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF

A Study on the Optimal Design for a Magnetic Bearing-Rotor with Maximum Stiffness using a Genetic Algorithm (유전자 알고리즘을 이용한 최대 강성을 갖는 자기베어링-회전체 최적설계에 관한 연구)

  • Kim, Chae-Sil;Jung, Hoon-Hyung;Park, Bong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.167-174
    • /
    • 2013
  • High speed rotor systems with magnetic bearings have been the subject of much research in recent years due to the potential for active vibration control. In this thesis, optimal design was conducted for an 8-pole heteropolar magnetic bearing used in the flexible rotor of a turbo blower. In connection with bearing stiffness, this optimal design process was conducted using a genetic algorithm(GA), which is based on natural selection and genetics. The maximum stiffness of the magnetic bearing-rotor was found by considering the critical speeds of the flexible rotor. As a result, the magnetic bearings were optimized to have maximum stiffness.

A Design of High Speed SRM Drive System (고속 SRM 구동 시스템 설계)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.110-113
    • /
    • 2005
  • This paper proposes high speed SRM drive system for blower with a new 4-level inverter and precise excitation position generator. For the high speed blower, a proper 12/8 SRM is designed and analyzed. In order to get a fast build-up and demagnetization of excitation a current, now 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation.

  • PDF

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

Control Algorithms of a Condensing Gas Boiler (응축형가스보일러의 제어알고리즘)

  • Han, Do-Young;Kim, Sung-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.399-404
    • /
    • 2008
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a condensing gas boiler unit, the effective control of the system is necessary. In this study, control algorithms of a condensing gas boiler were developed. Control algorithms are composed of the setpoint algorithm and the control algorithm. The setpoint algorithm consists of the supply water temperature setpoint algorithm and the pump setpoint algorithm. The control algorithm consists of the gas valve control algorithm and the blower control algorithm. In order to analyse the performance of control algorithms, dynamic models of a condensing gas boiler system were used. Simulation results showed that control algorithms developed for this study may be practically applied to the condensing gas boiler.

  • PDF

The Intelligent Control Algorithm of a Transformer Cooling System (변압기 냉각시스템의 지능제어알고리즘)

  • Han, Do-Young;Won, Jae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.515-522
    • /
    • 2010
  • In order to improve the efficiency of a transformer cooling system, the intelligent algorithm was developed. The intelligent algorithm is composed of a setpoint algorithm and a control algorithm. The setpoint algorithm was developed by the neural network, and the control algorithm was developed by the fuzzy logic. These algorithms were used for the control of a blower and an oil pump of the transformer cooling system. In order to analyse performances of these algorithms, the dynamic model of a transformer cooling system was used. Based on various performance tests, energy savings and stable controls of a transformer cooling system were observed. Therefore, control algorithms developed for this study may be effectively used for the control of a transformer cooling system.

A MTPA Control Method for Sensorless V/f Operation of SPMSMs (SPMSM의 센서리스 V/f 운전 시 MTPA 제어 기법)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.240-246
    • /
    • 2018
  • In this paper, a sensorless V/f control based on maximum torque per ampere (MTPA) operation for PMSMs is proposed. Given that the MTPA operation is not considered in the conventional sensorless V/f control, efficient PMSM drives cannot be achieved. Therefore, this paper proposes an improved technique based on the d-axis current control to enable the MTPA operation in the V/f control for PMSMs. A stabilization technique is also proposed to improve the dynamic characteristics and stability against load variation. The effectiveness of the proposed technique is verified by conducting experiments with a 250 W SPMSM for driving a blower.

PRELIMINARY STUDY ON COMPOSTING OF THE CATTLE MANURE AND RICE HULLS MIXTURES BY NEGATIVE AERATION

  • Park, K. J.;J. H. Hong;Park, M. H.;Park, W. C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.777-783
    • /
    • 2000
  • Composting by negative aeration is a reasonable proposition to control odor generated during composting process. Cattle manure and rice hulls mixtures were composted in a bin composting system by negative aeration. Continuous(CA) and intermittent(IA) aeration methods were applied to analyze the composting characteristics. The composting temperature and the ammonia emission during composting were investigated according to the aeration methods. The main problem for the negative aeration was the generation of condensate in the suction line of blower. The quantity of condensate was significant for continuous aeration. The aeration method should be modified to escape from the cooling effect of continuous aeration at the initial stage of composting. It took a longer time to finish a composting for intermittent aeration on account of lower aeration. It was concluded that the composting by negative aeration could be accomplished by either continuous or intermittent aeration method if the flow rate would be controlled more efficiently and the water vapor in suction line of blower could be removed effectively. Ammonia emission increased up to maximum value of 675ppm for continuous aeration while 300ppm for intermittent aeration. However, the cumulative value of ammonia emission was larger for intermittent aeration than for continuous aeration.

  • PDF