• Title/Summary/Keyword: Blower Control

Search Result 107, Processing Time 0.018 seconds

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Kwon, Jin-Keun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.

Plant Growth Responses and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System (벽면형 식물바이오필터 내 식물 생육 및 실내공기질 정화)

  • Jung, Seul Ki;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.665-674
    • /
    • 2015
  • The final goal of this research is to develop a botanical biofiltration system, which combines green interior, biofiltering, and automatic irrigation, which can purify indoor air pollutants according to indoor space and the size of biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be more suitable for indoor space utilization. This study was performed to compare indoor air quality between the space adjacent to a botanical biofilter and the space away from the biofilter (control) without generation of artificial indoor air pollutants, and to evaluate plant growth depending on multiple floors within the biofilter. Each concentration of indoor air pollutants such as TVOCs, monoxide, and dioxide in the space treated with the biofilter was lower than that of control. Dracaena sanderiana ‘Vitoria’ and Epipremnum aureum ‘N Joy’ also showed normal growth responses regardless of multiple floors within the biofilter. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was effective for indoor air purification.

A Study on Aggregate Waste Separation Efficiency Using Adsorption System with Rotating Separation Net (회전분리망 흡착선별기의 순환 굵은골재 이물질 제거효율에 관한 연구)

  • Cho, Sungkwang;Kim, Gyuyong;Kim, Kyungwuk;Seon, Sangwon;Park, Jinyoung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • Aggregate waste separator with rotating separating net was designed for applying classification process of construction waste. In order to evaluate the performance of the aggregate waste separator, according to the type of waste, standardized waste samples are prepared using acrylic. The appropriate operating point was evaluated by the classification efficiency and misclassification rate of recycled aggregate according to the control frequency of the blower operating and inlet position of the separating net. The classification efficiency at the operating point of the aggregate waste separator was evaluated through flow analysis assuming recycled aggregate and waste sample as particles. As a result of the performance test, when the distance. between the conveyor belt and the inlet was 0.2m, the classification efficiency was 95%, but the misclassification rate of recycled aggregate was 2% or more, which satisfies the classification efficiency and the misclassification rate of less than 2%. The operating point was shown at a control frequency of 58Hz at a suction distance of 0.254m. As a resu lt of flow analysis, there was no misclassification of recycled aggregate. In order to redu ce constru ction waste in the existing recycled aggregate production process, adsorption system using a rotating separating net that can be operated as an installation type was built.

Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

  • Pyun, Jung-Hoon;Shin, Tae-Bong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Tae-Hyung;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • PURPOSE. To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS. The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at $80^{\circ}C$ after hydrogen peroxide etching. After storage of the specimens in distilled water at $37^{\circ}C$ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (${\alpha}=0.05$). RESULTS. Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION. Fiber post silanization and subsequent heat treatment ($80^{\circ}C$) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study.

Development of Biofilter for Reducing Offensive Odor from Pig House (돈사 악취 저감을 위한 바이오필터 개발)

  • Lee, Seung-Joo;Lim, Song-Soo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • This study was conducted to develop the biofilter fur reducing ammonia $(NH_3)$ and hydrogen sulfide $(H_2S)$ gas emission from a pig house. A biofilter was designed and constructed by a type of squeeze air into the column type of air flow upward. Its column size was ${\Phi}260{\times}360mm$. It was used pressure drop gauge, turbo blower, air temperature, velocity sensor and control program that was programed by LabWindows CVI 5.5. Mixing materials were consisted with composted pine tree bark and perlite with 7:3 ratio (volume). The biofilter media inoculated with ammonia (Rhodococcus equi A3) and hydrogen sulfide (Alcaligenes sp. S5-5.2) oxidizing microorganisms was installed in a commercial pig house to analyzed the effectiveness of biogas removal for 10 days. Removal rates of ammonia and hydrogen sulfide gases were 90.8% and 81.5%, respectively. This result suggests that the pine compost-perlite mixture biofilter is effective and economic for reducing ammonia ana hydrogen sulfide gases.

A Study on Combustion Characteristics in terms of the Type of Fuel Supply Device (Feeder) of a Wood Pellet Boiler (목재펠릿보일러의 연료공급 장치의 형태에 따른 연소특성에 관한 연구)

  • Choi, Yun Sung;Euh, Seung Hee;Oh, Kwang Cheol;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • This study reports the combustion characteristics, such as burner temperature and the concentration of exhausted gas ($O_2$, $CO_x$, $NO_x$) due to the different types and pitches of the fuel supply feeder of the wood pellet boiler. The 1st grade wood pellets composed of mainly larch have been used for the experiment. In case of using the spring feeder, mean temperature of burner was approximately $821.76^{\circ}C$, and the mean concentration of oxygen, carbon monoxide, carbon dioxide and nitrogen oxide were approximately 8.88%, 93.35ppm, 12.15% and 139.83 ppm, respectively. The test result with the spring feeder was shown to approach the condition of complete combustion compared to that of a screw feeder and were in good agreement with authentication judgement standard. Furthermore, the combustion efficiency was improved according to the growth of screw pitch. The control of air flow rate from the blower and ventilator is needed to achieve the complete combustion.

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.