• Title/Summary/Keyword: Bloom

Search Result 1,078, Processing Time 0.031 seconds

A Study of Removal Property of Harmful Algal Blooms by Hwangto and Oriental Mineral Medicines (황토와 광물성 한약재의 적조구제 특성에 관한 연구)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Jang, Young-Nam;Park, Maeng-Eon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.277-289
    • /
    • 2006
  • This study was carried out to find a new material having high removal efficiency for the harmful red tide. C. polykrikoides grow very fast and accumulate into dense and visible patches near the surface of the seawater ('Water bloom'). Some mineral medicines and Hwangto (reddish soil consist of clay minerals and Fe-oxides) were used in this study to remove C. polykrikoides. The pre-determined sprinkling ratio of mineral vs. seawater which contains approximately 5,000 cells/mL of C. polykrikoides was 10 g/L. In order to quantify the removal efficiency, the density of living cells was measured by counting with the Intervals of 0, 10, 30, and 60 minutes after sprinkling. Five Hwangtos feom different localities were examined in this study. It is found that a material with a high concentration of Fe and Al was the most effective to remove C. polykrikoides. After the sprinkling of the Hwangto showing the best removal efficiency in the test, 99% of total algaes were found to be eliminated within 60 minutes. Jeokeokji showed the highest removal efficiency among clay mineral medicines(92% removal efficiency after 60 minutes), and the rests in decreasing order are as follows: Gamto (91%) > Baekseokji (89%) > Hydromica (81%). In addition, Fe-oxide mineral medicine similarly looking as fine-grained earthy Daejaseok showed 100% removal efficiencyafter 30 minutes, and Wooyoeryang, 95% after 60 minutes. It is noted that even little addition (1 g/L) of Daejaseok, 10% of Hwangto concentration into seawater showed the removal efficiency of 100% after 60 minutes. From the results, it could be concluded that the fine-grained earthy Daejaseok was the most effective natural mineral medicine to remove the C. polykrikoides from seawater. Under the microscope the removal mechanism was found to be activated in the following order: adsorption, swelling of chain colony, chain colony crisis and algaecide.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

Dynamics of Inorganic Nutrients and Phytoplankton in Shihwa Reservoir (시화호에서 무기영양염과 식물플랑크톤의 동태)

  • Kim, Dong-Sup;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.109-118
    • /
    • 2000
  • The dynamics of inorganic nutrients and phytoplankton population were examined at eight stations of Shihwa Reservoir, which situated near the cities newly constructed and the industrial complex of West-sea in Korea, from January to December 1999. Among environmental factors, average concentration of $NH_4$, SRP and SRSi were $522.7\;{\mu}g\;N/l$, $9.8\;{\mu}g\;N/l$ and $0.26\;{\mu}g\;Si/l$, respectively. Water quality was extremely deteriorated by a great amount of pollutants load into inner reservoir after the event of rainfall. Nutrients concentration was suddenly decreased toward the lower part. While $NO_3$ concentration did not much varied among stations, but it was relatively high in winter season. Chlorophyll-a concentration was high at the upper part of the reservoir, with average of $37.2\;{\mu}/l$, and closely related to the fluctuation of $NH_4$, SRP and SRSi concentrations. The phytoplankton development in the water column was dominated by diatom (autumn), prasinoid (winter) and dinoflagellate (summer). Dominant phytoplankton were composed to Skeletonema costatum of diatom, Prorocentrum minimum of dinoflagellate, Chroomonas spp. of cryptomonad, Eutreptiella gymnastica of euglenoid and Pyramimonas spp. of prasinoid. The large bloom of phytoplankton at the upper zone of the Shihwa Reservoir after inflow of a seawater were consistently observed. In consequence, water quality management of the inlet stream was assessed to be very important and urgent.

  • PDF

Seasonal Variations of Environmental Factors and Distribution of Anabaena cylindrica Growth-Inhibiting Bacteria in the Lower Daechung Reservoir (대청호 하류에서 환경요인과 Anabaena cylindrica 생장억제세균의 계절별 분포 변화)

  • Lee, Jung-Ho;Kim, Chul-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.128-135
    • /
    • 2000
  • The authors surveyed the seasonal variations of environmental factors, the distributions of heterotrophic bacteria and Anabaena cylindrica growth-inhibiting bacteria at each water layer in Daechung Reservoir to verify the role of bacteria during the extinction of bloom. Average water depth at site 1, 2, and 3 were 25.5 m, 15.0 m and 12.3 m, respectively. Water temperature showed a typical pattern seasonally. The variation of DO was relatively inverse proportional to that of water temperature, although it was irregular during summer time. DO decreased gradually to early May, fluctuated sharply after then, and followed by gradual increasement after middle of September. This variation pattern was notable at surface layer. There was remarkable difference in DO concentraion between surface layer and the other water layers during the period in which DO irregulary varied. The variation range of chlorophyll-a concentraion at surface layer in summer time was broad, and it was relatively high when DO was high. The population size of heterotrophic bacteria was high from Spring to Autumn, an declined after September when the water temperature droped rapidly. Especially this variation pattern was prominent at the surface layer. Bacteria that inhibit the growth of A. cylindrica was almost not detected by June, and its distribution increased in July. Afterward, it showed different variation pattern between each site. The distribution of A. cylindrica growth-inhibiting bacteria was higher at the middle and bottom layer than the surface layer in July and October, when it was larger at all sites for the study period. This result suggests that the antagonistic bacteria exhibit higher activity when host activity drops. These results also suggest that natural water bacteria control the distirbution of cyanobacteria, especially its activity as controller is remarkable when cyanobacterial growth declines.

  • PDF

Phytoplankton and Bacterioplankton in the Intertidal and Subtidal Waters in the Vicinity of Kunsan (군산부근 조간대 및 조하대역에서의 식물플랑크톤과 Bacterioplankton)

  • Lee, Won Ho;Lee, Gean Hyoung;Choi, Moon Sul;Lee, Da Mi
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.157-164
    • /
    • 1989
  • Quantitative species distribution and primary productivity of phytoplankton were studied monthly from August, 1987 to July, 1988 along with the quantitative distribution of total heterotrophic bacterioplankton and three groups of physiologically chracteristic bacterioplankton in the intertidal and subtidal waters off Kum River Estuary, Yellow Sea. A total of 121 phytoplankton taxa including 102 diatoms occurred, and cell concentration ranged from 15 to 5451 (cells/ml). The great spatio-temporal variations of the number of phytoplankton species and cell concentration well reflected the environmental differences between the intertidal and subtidal waters. Primary productivity (in Piopt, mgC/$m^3$/hr) ranged from 0.6 to 27.3. Just after the phytoplankton bloom (March) Piopt was very low in April at station 1, where amylolytic bacterioplankton also showed quite low population density. The peaks of primary productivity were not always coincided with those of phytoplankton standing crop. The ratio of Piopt's between samples well indicated the environmental differences between the intertidal and subtidal waters. Little characteristic trend was found in the scatter diagrams of phytoplankton standing crop along the population densities of total heterotrophic bacterioplankton and the three groups of physiologically characteristic bacterioplankton. In summer the phytoplankton standing crop was minimum in contrast with the high population density of bacterioplankton, which implies the influx of much allochthonous orgainc matter from Kum River. The scatter diagrams of Piopt along bacterioplankton population density revealed some phenomena there. Piopt had highly positive correlation with the population density of amylolytie bacterioplankton($R^2$=0.84) and that of lipolytic bacterioplankton($R^2$=0.70) while total heterotrophic bacterioplankton and proteolytic bacterioplankton had lesser correlations with Piopt. From the regression lines the increase of unit Piopt (mgC/$m^3$/hr) in the study area was calculated to mean the increase of $9.0{\times}10$ cells/ml and $8.0{\times}10$ cells/ml of amylolytic bacterioplankton and lipolytic bacterioplankton, respectively.

  • PDF

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

Visitor Characteristics of the Mujechi Bog (산지습원 무제치늪의 탐방객 특성)

  • Kim, Young Min;Kim, Ji Yoon;Oh, Ki Cheol;Joo, Gea-Jae;Do, Yuno
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.262-266
    • /
    • 2016
  • We investigated the characteristic demographics for visitors to Mujechi bog on Mt. Jungjok, with the purpose of developing a management strategy for the conservation and wise use of the montane wetland. Using daily visitor data from 2007, 2011, and 2015 we extracted and analyzed; visitation date, age, residential areas, purpose of visitation and the time allotted for the visit. The largest age cohort was the decade of the fifties(36.8%/total number of visitors) and followed by the decade of the forties(30.4%). The majority of visitors were from Ulsan(67%), Busan(16.6%), and Yangsan(10.8%). The visitors' primary objectives were to hike Mt. Jungjok(39-64.4%) or view Mujechi bog(18.7-51.8%) during the weekend. People visited more during the weekend than weekdays(F=6.19, p<0.002). In addition, there was a clear seasonality obvious in the monthly visits. The proportion of visitors were present in spring and fall, the month with the highest visitation rate was May at $15.6{\pm}2.8%$($mean{\pm}S.D.$). This increase in May was partly due to the desire to see the Korean azalea in bloom in the spring. Montane bog, like Mujechi, could be highly affected by disturbance(e.g. stamping, sediment inflow) caused by visitors. Therefore, it is suggested, based on the level of visitation that to reduce possible human disturbance effects, that either a seasonal restriction or a yearly alternation of trails be established. Visitors to the wetland should be restricted access to certain areas of the wetland, or be required to go in the accompaniment of a ranger or warden.

Breeding of 'Joyskin' Pear as fruit for Eating with the Skin (껍질째 먹는 배 '조이스킨' 육성)

  • Kim, Yoon-Kyeong;Kang, Sam-Seok;Cho, Kwang-Sik;Won, Kyung-Ho;Shin, Il-Sheob;Kim, Myung-Su;Ma, Kyeong-Bok;Lee, In Bog
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.959-965
    • /
    • 2016
  • In 1994, a new cultivar 'Joyskin' was created from a cross between the cultivars 'Whangkeumbae' and 'Waseaka' at the Pear Research Institute of the National Institute of Horticultural and Herbal Science, Rural Development Administration. In 2006, the 'Joyskin' was selected from among the 317 seedlings resulting from the cross for its skin and taste qualities. Regional adaptation tests were conducted in nine regions and in ten experimental plots from 2006 to 2011. The cultivar was named in 2011. 'Joyskin' showed a vigorous growth habit and semi-spread characteristics similar to 'Whangkeumbae'. The average full bloom date for 'Joyskin' was April 21st, which was also similar to 'Whangkeumbae'. The optimum fruit ripening time was September 6-8th, which was six or eight days earlier than 'Whangkeumbae'. The fruit was round in shape and the skin was a golden yellow color at maturity. The average fruit weight was 320 g and the flesh firmness was $2.5kg/8mm{\varphi}$. The firmness of the fruit skin determined by a blade-type plunger of texture analyzer was 22.9 N, which was significantly different from that of 'Whangkeumbae' 29.9N. Stone cell analysis of 'Joyskin' by phloroglucinol-HCl, showed that 'Joyskin' stone cells were small in size and few in numbers cpmpared to those of cultivars of was 'Manpungbae', 'Niitaka', and 'Whangkeumbae'. The patent application for 'Joyskin' was submitted in April, 2012 (Grant No. 2012-337). In 2016, 'Joyskin' (Grant No. 5895) was registered as a separate record, with uniformity and stability per Korean Seed Industry Law.

The Trend and Assessment of Water Pollution from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류의 오염 양상과 수질평가)

  • Rim, Chang-Soo;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.51-60
    • /
    • 2000
  • In order to understand the trend and assessment of water pollution, seasonal water quality was determined in the main river and the tributaries from midstream to downstream of the Kum River from March 1998 to June 1999. Among environmental factors, the variation of nitrogen, phosphorus and chlorophyll-a was distinctive on an aspect of increase and decrease relatively to others, and particularly the impact of inorganic N ${\cdot}$ P inflowing into the main river was observed to be more significant at the Kapchon, Mihochon and Soksongchon among the tributaries. Water quality was highly related to hydrologic factor, and it was more deteriorated when water discharge maintains for a long time below normal flow or relatively at low condition of minimum and drought flow. These phenomena were remarkablee from December to March of the next year. $NH_4$ and SRP were decreased dramatically flowing toward the lower part of the river and chl-a was increased exponentially. While, the variations of $NO_3$ and $BOD_5$ were regular from midstream to downstream and there was no significant difference between the stations. Limiting nutrient for Phytoplankton growth seemed to be P than N because the ratio of TN/TP or DIN/SRP was relatively high as 42 or 544 in the main river, respectively. The main river and tributaries were ranked to be third grade, based on the assessment of BOD as an indirect indicator of organics, but particularly Kapchon was ranked to be over fifth grade. In addition, the inflow of high N ${\cdot}$ P nutrients from tributaries including Kapchon and Mihochon seemed to be major factor of the development of water pollution of the Kum River. On the other hand, persistent bloom of phytoplankton in lower part of the river was observed. As a conclusion, management of water quality for main source of pollution is urgent.

  • PDF

Optimization Test of Plant-Mineral Composites to Control Nuisance Phytoplankton Aggregates in Eutrophic Reservoir (부영양 저수지의 조류제거를 위한 기능성 천연물질혼합제의 최적화 연구)

  • Lee, Ju-Hwan;Kim, Baik-Ho;Moon, Byeong-Cheon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • To optimize the natural chemical agents against nuisance phytoplankton, we examined algal removal activity (ABA) of Plant-Mineral Composite (PMC), which already developed by our teams (Kim et al., 2010), on various conditions. The PMC are consisted of extracted-mixtures with indigenous plants (Camellia sinensis, Quercusacutissima and Castanea crenata) and minerals (Loess, Quartz porphyry, and natural zeolite), and characterized by coagulation and floating of low-density suspended solids. A simple extraction process was adopted, such as drying and grinding of raw material, water-extraction by high temperature-sonication and filtering. All tests were performed in 3 L plastic chambers varying conditions; six different concentrations ($0{\sim}1.0\;mL\;L^{-1}$), six light intensities ($8{\sim}1,400\;{\mu}mol\;m^{-2}s^{-1}$), three temperatures ($10{\sim}30^{\circ}C$), four pHs (7~10), five water depths (10~50 cm), and three different waters dominated by cyanobacteria, diatom, and green algae, respectively. Results indicate that the highest ABA of PMC was seen at $0.05\;mL\;L^{-1}$ in treatment concentrations, where showed a reduction of more than 80% of control phytoplankton biomass, while $1,400\;{\mu}mol\;m^{-2}s^{-1}$ in light intensity (>90%), $20{\sim}30^{\circ}C$ temperature (>60%), 7~9 in pH (>90%), below 50 cm in water depth (>90%), and cyanobacterial dominating waters (>80%), respectively. Over the test, ABA of PMC were more obvious on the algal biomass (chlorophyll-${\alpha}$) than suspended solids, suggesting a selectivity of PMC to particle size or natures. These results suggest that PMC agents can play an important role as natural agents to remove the nuisant algal aggregates or seston of eutrophic lake, where occur cyanobacterial bloom in a shallow shore of lake during warm season.