• 제목/요약/키워드: Blood-Simulator

검색결과 39건 처리시간 0.028초

자기혼합형 LDF 프로브와 혈류 시뮬레이터의 구현 (Implementation of a self-mixing type LDF probe and blood flow simulator)

  • 고한우;김종원
    • 센서학회지
    • /
    • 제8권2호
    • /
    • pp.133-138
    • /
    • 1999
  • In this pager, the authors have implemented a blood flow simulator and a LDF(laser Doppler flowmeter) probe using self-mixing effect of the laser diode. The purpose of the blood flow simulator is to simulate microvascular blood flow in tissue. It consists of melinex film (thickness = $123\;{\mu}m$) which has similar optical characteristics to epidermis and porous polyethylene filter (Vyon, porosity 35%, mean pore size $50\;{\mu}m$, thickness=1 mm) which has similar optical characteristics to dermis. The blood flowmeter probe consists of laser diode(5 mW, 780 nm wavelength), CD lens(focal length 12 mm). current-to-voltage converter, highpass filter, and premplifier. It doesn't need optical fiber, therefore, implementation of the probe is simpler than conventional probe using optical fiber.

  • PDF

합성제어기를 이용한 혈압 시뮬레이터의 구현 (Blood pressure simulator using hybrid controller)

  • 김철한;사공건;남기곤;전계록
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.44-51
    • /
    • 2007
  • A hybridized simulator for generating blood pressure waveform is proposed to study the remedy and/or evaluation of the conventional sphygmomanometer utilizing the oscillometric method which is widely applied. The blood pressure of a flowing fluid was controlled for the blood vessel's condition caused by a rhythmical and periodical contraction/relaxation because of the special excitatory and conductive system of the heart. In this study, a hybridized controller composed of the PI feedback controller and the feedforward controller. The inverse dynamics function is proposed to operating the control valve while the pressure is applied in an oil pressure tank. The proposed hybrid simulator reproducing the blood pressure waveform in an artificial blood vessel has kept the control performance consistent over all range. Based on these results, the proposed simulators could be applied to the development and compensation of the non invasive sphygmomanometer type as well as to study the characteristics of the blood pressure and blood vessel.

혈관계의 특성이 반영된 심혈관계 시뮬레이터의 개발 (Development of a Cardiovascular Simulator with Cardiovascular Characteristics)

  • 이주연;신상훈
    • 대한한의진단학회지
    • /
    • 제16권3호
    • /
    • pp.33-40
    • /
    • 2012
  • Objectives: Existing cardiovascular simulators are used to evaluate artificial organs such as artificial hearts, prosthetic valves, and artificial blood vessels, and pulses are typically triggered using artificial hearts. However, the forms of pulse waves vary according to the location of arteries, and for precise assessment of artificial blood vessels, the development of simulators that generate diverse pressure pulse waves is necessary. This study developed a novel cardiovascular simulator that generates different forms of pulse waves. Methods: This simulator consists of a stepping motor, a slider-crank mechanism that transforms the rotation movement of a motor into the straight-line motion of a piston, a piston that generates pulsatile flows, a water tank that supplies fluids, an elastic tube made of silicon, and a device that adjusts the terminal resistance of fluids. Results & Conclusion: This study examined motor rotation and its operation under conditions similar to the physiological conditions of the heart. The simulator developed in this study produced diverse forms of waves, and the generated pressure waves well satisfied physiological conditions.

자동혈압계 성능평가를 위한 인체혈압 시뮬레이터 개발 (A Simulator for the Validation of Non-invasive Blood Pressure (NIBP) Monitoring Devices)

  • 도일;임현균;안봉영;지영준;이종실;오재훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.111-115
    • /
    • 2017
  • Blood pressure is one of the important vital signs for monitoring the medical condition of a patient. Automated NIBP(non-invasive blood pressure) monitoring devices calculate systolic and diastolic blood pressures from the oscillation in cuff pressure caused by a pulsation of an artery. To validate the NIBP devices, we developed a simulator to supply the oscillometric waveforms obtained from human subjects. The simulator provided pressure pulses to device-under-test and device readings were compared to the auscultatory references. Fully automated simulation system including OCR(optical character recognition) were developed and used for NIBP monitoring devices. The validation results using the simulator agreed well with previous clinical validation. More validation studies using the standardized oscillometric waveforms would be required for the replacement of clinical trials to validate a new automated NIBP monitoring device.

유체 순환 혈압 시뮬레이터의 구현 (Implementation of The Fluid Circulation Blood Pressure Simulator)

  • 김철한;이규원;남기곤;전계록
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

스텝 모터 펌프를 이용한 맥진 가능한 시뮬레이터의 개발 (Development of pulse diagnosis possible simulator using the stepper motor pumps)

  • 류근택;우성희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.915-918
    • /
    • 2016
  • 의료산업의 급속한 변화와 의료 및 간호 인력의 증가로 인하여 가상 시험 장치에 대한 개발이 요구되고 있으며 심장 모델링할 수 있는 시뮬레이터와 혈관, 혈류에 대한 실습장비에 대한 개발의 중요성이 증가하고 있다. 따라서 본 연구에서는 스텝 모터를 이용하여 심장 펌프를 제작하여 동맥과 정맥 혈압, 혈류 시뮬레이션을 위한 장비를 개발하고 그 기능을 평가하고자 한다. 제안 시스템은 심장 시뮬레이션을 위한 펌프와 동맥, 정맥 혈관의 저항을 모사하기 위한 밸브장치 그리고 정맥계의 특성을 나타내는 저감장치로 구성한다. 심장 시뮬레이터는 롱거펌프(BOXER)를 사용하였으며 동맥과 정맥혈관은 실리콘 튜브를 사용하고 저감장치를 설계 및 제작하였다. 그리고 동맥혈압 측정을 위하여 압력센서를 사용하였다. 또한 제안 시스템의 평가를 위하여 심장 박동수는 분당 60회로 혈압의 범위는 50 ~ 100mmHg로 선정하여 측정 혈압과 사람의 혈압을 비교 평가하였다.

  • PDF

심혈관계 시뮬레이터 개발 동향 분석을 통한 맥파검사용기기 성능평가 시뮬레이터 연구개발 방향 모색 (A Study on the Direction of Developing a Simulator for Performance Evaluation of Pulse Wave Detectors Through a Review of the Development Status of Cardiovascular Simulators)

  • 이주연;김재영;고동현;이지원;이태희;박창원;이수경
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권3호
    • /
    • pp.136-146
    • /
    • 2022
  • In this study, it is intended to provide basic data that can help develop a cardiovascular simulator for performance evaluation of pulse wave detectors by identifying the development status of domestic and overseas cardiovascular simulators. A total of 119 papers were selected by excluding duplicate literature, gray literature, and literature not related to a cardiovascular simulator. Based on the selected literature, the research trend of cardiovascular simulators was analyzed. As a result of analyzing the purpose of the study, most of the simulators were developed to evaluate the hemodynamic properties of artificial hearts and valves. In addition, it was used for simulation evaluation or hemodynamic studies such as pulse wave studies. As a result of analyzing configurations of the simulators, a heart most often consisted of only one left ventricle. For blood vessels, the Windkessel model was most often constructed using chambers and valves. In most studies, blood was reproduced by mixing glycerin and water to reproduce both density and viscosity. In addition, as a result of analysis from the perspective of medical device performance evaluation, simulators for evaluating artificial heart and artificial valves have been studied a lot, whereas simulators for blood pressure, pulse wave, and blood flow devices have been relatively insignificant. Based on the review results, we suggested considerations when developing a simulator for performance evaluations of a pulse wave detector.

Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart

  • Okada, Jun-ichi;Washio, Takumi;Sugiura, Seiryo;Hisada, Toshiaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.295-303
    • /
    • 2019
  • A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted drug-induced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.

유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구 (A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties)

  • 김상민;이강휘;이성수;이혁재;이병헌;김경섭;이정환
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.