• Title/Summary/Keyword: Blood oxygen level dependent

Search Result 32, Processing Time 0.04 seconds

The Effect on Activity of Cerebral Cortex by Key-point Control of The Adult Hemiplegia with fMRI (fMRI를 이용한 성인 편마비의 항조절점 운동이 대뇌피질의 활성화에 미치는 효과)

  • Lee Won-Kil
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.295-345
    • /
    • 2003
  • This study investigated activation of cerebral cortex in patients with hemiplegia that was caused by neural damage. Key-point control movement therapy of Bobath was performed for 9 weeks in 3 subjects with hemiplegia and fMRI was used to compare and analyze activated degree of cerebral cortex in these subjects. fMRI was conducted using the blood oxygen level-dependent(BOLD) technique at 3.0T MR scanner with a standard head coil. The motor activation task consisted of finger flexion-extension exercise in six cycles(one half-cycles = 8 scans = $3\;sec{\times}\;8\;=\;24\;sec$). Subjects performed this task according to visual stimulus that sign of right hand or left hand twinkled(500ms on, 500ms off). After mapping activation of cerebral motor cortex on hand motor function, below results were obtained. 1. Activation decreased in primary motor area, whereas it increased in supplementary motor area and visual association area(p<.001). 2. Activation was observed in bilateral medial frontal gyrus, middle frontal gyrus of left cerebrum, inferior frontal gyrus, inter-hemispheric, fusiform gyrus of right cerebrum, superior parietal lobule of parietal lobe and precuneus in subjedt 1, parahippocampal gyrus of limbic lobe and cingulate gyrus in subject 2, and inferior frontal gyrus of right frontal lobe, middle frontal gyrus, and inferior parietal lobule of left cerebrum in subject 3 (p<.001). 3. Activation cluster extended in declive of right cellebellum posterior lobe in subject 1, culmen of anterior lobe and declive of posterior lobe in subject 2, and dentate gyrus of anterior lobe, culmen and tuber of posterior lobe in subject 3 (p<.001). In conclusion, these data showed that Key-point control movement therapy of Bobath after stroke affect cerebral cortex activation by increasing efficiency of cortical networks. Therefore mapping of brain neural network activation is useful for plasticity and reorganization of cerebral cortex and cortico-spinal tract of motor recovery mechanisms after stroke.

  • PDF

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Metabolic Changes on Occipital Cortex during Visual Stimulation with Functional MR Imaging and H MR Spectroscopy (기능적 자기공명영상법과 양성자 가지공명분광법을 이용한 시각자극에 의한 후두염 피질의 대사물질 변화)

  • Kim, Tae;Suh, Tae-Suk;Choe, Bo-Young;Kim, Sung-Eun;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Purpose : The purpose of this study was aimed to evaluate the BOLD(blood oxygen level dependent) contrast fMRI(functional MR imaging) in the occipital lobe and to compare with the metabolic changes based on H MRS (MR spectroscopy) and MRSI (MR spectroscopic imaging) before and after visual stimulation Materials and Methods : Healthy human volunteers (eight males and two females with 24-30 year age) participated in this study. All of the BOLD fMRI were acquired on a 1.5T MR with EPI during supervised visual stimulation in the occipital lobe. The red flicker with 8Hz was used for visual stimulation. After imaging acquisition, the MR images were transferred into unix workstation and processed with acquired from the same location based on the activation map. MRSI (magnetic resonance spectroscopic imaging) was also acquired to analyze the lactate changes before and after stimulation. Results : The activation maps were successfully produced by BOLD effect due to visual stimulation. NAA (N-acetyle aspartate)/Cr (creatine) ratio varied only from $1.79{\pm}0.28{\;}to{\;}1.88{\pm}0.20$ in activation area before and after stimulation. However, the signal intensity of lactate was elevated $9.48{\pm}4.38$ times higher than before activation. Lactate metabolite images were consistent with the activation maps. Conclusion : The BOLD contrast fMRI is enough sensitive to detect the activated area in human brain during the visual stimulation. Lactate metabolite map presents the evidence of lactate elevation on the same area of activation.

  • PDF

Functional MRI ofThe Supplementary Motor Area in Hand Motor Task: Comparison Study with The Primary Motor Area (수지운동자극을 사용한 부운동중추의 기능적 MR연구: 일차운동중추와의 비교)

  • 이호규;김진서;최충곤;임태환
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.103-107
    • /
    • 1997
  • Purpose: To investigate the localization and functional lateralization of the supplementary motor area (SMA) in motor activation tests in comparison to that of the primary motor area. Materials and Methods: Seven healthy volunteers obtained echoplanar imaging blood oxygen level dependent technique. This study was carried on 1.5T Siemens Magnetom Vision system with the standard head coil. Parameters of EPI were followed as; TR/TE : 1.0/66.0msec, flip angle: $90^{\circ}$, field of view: $22cm{\times}22cm,{\;}matrix:{\;}128{\times}128$, slice number/slice thickness/gap: 1O/4mm/0.8mm with fat suppression technique. Motor task as finger opposition in each hand consisted of 3 sets of alternative rest and activation periods. Postprocessing were done on Stimulate 5.0 by using cross-correlation statistics. To compare the functional lateralization of the SMA in the right and left hand tests, each examination was evaluated for the percent change of signal intensity and the number of activated voxels both in the SMA and in the pri¬mary motor area. Hemispheric asymmetry was defined as difference of summation of the activted voxels between each hemisphere. Results: Percent change of signal intensity in the SMA (2.49 -3.06%) is lower than that of primary motor area(4.4 -7.23%). Percent change of signal intensity including activated voxels were observed almost equally in the right and left SMA. As for summation of activated voxels, primary motor area had significant difference between each hemisphere but not did the SMA. Conclusion: Preferred contralateral dominant hemisphere and hemispheric asymmetry were detected in the primary motor area but not in the SMA.

  • PDF

Effects of Head Acupuncture Versus Upper and Lower Limbs Acupuncture on Signal Activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex (두침과 상하지 침자극이 뇌와 뇌의 체성감각피질에 미치는 영향에 대한 fMRI Study)

  • Park, Jung-Mi;Gwak, Ja-Young;Cho, Seung-Yeon;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Jang, Geon-Ho;Bang, Jae-Seung
    • Journal of Acupuncture Research
    • /
    • v.25 no.5
    • /
    • pp.151-165
    • /
    • 2008
  • Objectives : To evaluate the effects of Head Acupuncture versus Upper and Lower Limbs Acupuncture on signal activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex. Subjects and Methods : 10 healthy normal right-handed female volunteer were recruited. The average age of the 10 subjects was 30 years old. The BOLD functional MRI(fMRI) signal characteristics were determined during tactile stimulation was conducted by rubbing 4 acu-points in the right upper and lower limbs($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$). After stimulation of Head Acupuncture in Sishencong($HN_1$), $GB_{18}$, $GB_9$, $TH_{20}$ of Left versus Upper and Lower Limbs Acupuncture($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$ of Right) and took off needles. Then the BOLD fMRI signal characteristics were determined at the same manner. Results : 1. When touched with cotton buds(sensory stimulation), left Parietal Lobe, Post-central Gyrus, primary somatosensory cortex(BA 1, 2, 3), and primary motor cortex(BA 4) were mainly activated. When $ST_{36}$ was stimulated, Frontal Lobe, Parietal Lobe, Cerebellum, and Posterior Lobe as well as Inter-Hemispheric displaying a variety of regions. 2. In signal activation before and after Head Acupuncture reaction, it showed signal activation after removing the acupuncture needle and right Somatosensory Association Cortex, Postcentral Gyrus, and Parietal Lobe were more activated. 3. In reactions of before and after Upper and Lower Limb Acupuncture, it also showed signal activation after removing the acupuncture needle and bilateral Occipital Lobe, Lingual Gyrus, visual association cortex, and Cerebellum were activated. 4. After acupuncture stimulation, In Upper and Lower Limb Acupuncture Group, left frontal Lobe, Precentral Gyrus and Bilateral parietal lobe, Postcentral Gyrus and Primary Somatosensory Cortex(BA 2) were activated. In Head Acupuncture Group, which has most similar activation regions, but especially right Pre-Post central Gyrus, Primary Somatosensory Cortex(BA 3), Primary Motor Cortex, frontal Lobe and Parietal Lobe were activated. Conclusions : When sensory stimulation was done with cotton buds on four acup-points($LI_1$, $LI_{10}4, $LV_3$, $ST_{36}$), while bilaterally activated, contralateral sense was more dominant. It showed consistency with cerebral cortex function. When $ST_{36}$ was stimulated Frontal Lobe, Parietal Lobe, Cerebellum, Posterior Lobe as well as Inter-Hemispheric were stimulated. In Head Acupuncture, it showed more contralateral activation after acupuncture. In Upper and Lower Limb Acupuncture, it showed typically contralateral activation and deactivation of limbic system after acupuncture stimulation. Therefore, there were different fMRI BOLD signal activation reaction before and after Head Acupuncture vs Upper and Lower Limb Acupuncture which might be thought to be caused by acu-points' sensitivity and different sensory receptor to response acupuncture stimulation.

  • PDF

Neural correlations of familiar and Unfamiliar face recognition by using Event Related fMRI

  • Kim, Jeong-Seok;Jeun, Sin-Soo;Kim, Bum-Soo;Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.78-78
    • /
    • 2003
  • Purpose: This event related fMRI study was to further our understanding about how different brain regions could contribute to effective access of specific information stored in long term memory. This experiment has allowed us to determine the brain regions involved in recognition of familiar faces among non familiar faces. Materials and Methods: Twelve right handed normal, healthy volunteer adults participated in face recognition experiment. The paradigm consists of two 40 familiar faces, 40 unfamiliar faces and control base with scrambled faces in a randomized order, with null events. Volunteers were instructed to press on one of two possible buttons of a response box to indicate whether a face was familiar or not. Incorrect answers were ignored. A 1.5T MRI system(GMENS) was employed to evaluate brain activity by using blood oxygen level dependent (BOLD) contrast. Gradient Echo EPI sequence with TR/TE= 2250/40 msec was used for 17 contiguous axial slices of 7mm thickness, covering the whole brain volume (240mm Field of view, 64 ${\times}$ 64 in plane resolution). The acquired data were applied to SPM99 for the processing such as realignment, normalization, smoothing, statistical ANOVA and statistical preference. Results/Disscusion: The comparison of familiar faces vs unfamiliar faces yielded significant activations in the medial temporal regions, the occipito temporal regions and in frontal regions. These results suggest that when volunteers are asked to recognize familiar faces among unfamiliar faces they tend to activate several regions frequently involved in face perception. The medial temporal regions are also activated for familiar and unfamiliar faces. This interesting result suggests a contribution of this structure in the attempt to match perceived faces with pre existing semantic representations stored in long term memory.

  • PDF

Total Spinal Block and Cortical Epidural Block for Whiplash Syndrome and Reflex Sympathetic Dystrophy (Report of Four Cases) (전척수(全脊髓) 및 경막외차단(硬膜外遮斷)으로 편타성(鞭打性) 손상(損傷)의 통증치험(痛症治驗) (4례(例) 보고(報告)))

  • Park, Wook;Ok, See-Young;Song, Hoo-Bin
    • The Korean Journal of Pain
    • /
    • v.1 no.1
    • /
    • pp.106-119
    • /
    • 1988
  • For the relief of pain in 3 cases of whiplash syndromes (case I, II and IV) and in one of reflex sympathetic dystrophy (case III), we have carried out six intentional. total spinal blocks (TSB) which attempted two times in case I, three in case II and one in carte III whoso various symptoms were chronically unresponsive to the usual conservative treatments, and a time of cervical epidural and right suprascapular nerve block in case W whose acute symptom lasted 4 drys following the cervical injury (see fables from 1 to 9). During the 753, we have observed clinically the sequential charges of respiration, lid and pupil reflexes, body motion and consciousness. And checked the blood pressure, pulse rate and arterial Pco2. The effectiveness of those blocks has been assessed by using the Visual Analog Scale which is designed to measure the patient$\acute{s}$ subjective intensity of pain and also we have found out the sequelae following those blocks. The methods of the blocks were as the following: 1. Under the N.P.O. for 8~10 hours, the preparations of immediate cardiopulmonary resuscitation and premedication with atropine 0.5mg at thirty minutes before the TSB, it was performed by injecting the mixture of 2% mepivacaine 10 or 15ml and normal saline 10 or 5ml through No. 23 G. spinal needle into the subarachnoid space of $C_7-T_1$ interspinous region with fully flexed neck on the lateral posture. Immediately after the injection of the local anesthetic in the lateral position, the patient$\acute{s}$ were hasten to change Trendelenburg$\acute{s}$ position in order to act the drugs cephalad and to make easy controlled respiration with oxygen. 2. The cervical epidural block was done by injecting the mixture of 0.5% bupivacaine 4ml, normal saline 4ml and triamcinolone 15mg through No. 18 G. Tuohy needle into the epidural space on the same region and posture as the above without premedication.7he suprascapular nerve block was done by injecting of 0.5% bupivacaine 3ml only into the right suprascapular fossa on the sitting posture. The results were as the following: 1. The cessation of respiration was seen within 5 minutes following the subarachnoidal injection of the above 20ml mixture in 2 to 3 minutes and then soon the consciousness began to disappear. The loss of Lid and pupil reflexes noted between 5 to 10 minutes and the size of the dilated pupils was equal between 5 to 20 minutes, but the pupil of the dependent side on tile lateral position was dilated 1 to 3 minutes earlier than that of the independent. The patients had r=ever responded to any stimulations during the TSB except their heart funtion. 2. The recovery of the TSB was as the following, firstly the ankle and lower limb of the independent side began to move slightly with in 34 to 75 minutes after the injection and then that of the dependent Secondly the neck and upper limb moved 6 to 15 minutes later than the lower limb. Thirdly the self respiration began to appear between 40 to 80 minutes from the block. The lid and pupil reacted to touch and light respectively between 40 to 80 minutes but the pupil of the independent side responded earlier than that of the depends. Lastly the consciousness recovered completely between 80 to 125 minutes from the block. 3. In the cardiopulmonary function during the TSB, the blood pressure were stable except the 210/130 tory at the and block of case I. There were bradycardias between 65 to 85 minutes in case I and II but no arrythmia on the EKG. The level of the arterial Pco2 was maintained to 43~45 torr during the TSB. 4. The effectiveness of the above blocks was no pain(0%) in case IV, and light (10~20%) in case I and II but no improvement in case III. 5. The right arm weakness has been complicated as to be Injected accidently the "COLD" local anesthetic at the End block of case I.

  • PDF

Longitudinal flowcytometric measurement of respiratory burst activity of neutrophils in patients with pneumonia (폐렴경과 중 순환 호중구의 Respiratory Burst 활성도 변화)

  • Lee, Jae Myung;Lee, Jong Min;Kim, Dong Gyu;Choi, Jeong Eun;Mo, Eun Kyung;Park, Myung Jae;Lee, Myung Goo;Hyun, In Gyu;Jung, Ki-Suck;Park, Chan Jeoung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.5
    • /
    • pp.728-735
    • /
    • 1996
  • Background : Recognition and ingestion of opsonized microorganisms by neutrophils induces the burst of oxidative metabolic activity. Products of the respiratory burst activity provide powerful oxygen dependent killing mechanism. Measurement of respiratory burst activity has been a major indicator of the functional capacity of neutrophils. We determined the respiratory burst activity of neutrophils in patients with pneumonia and observed the changes during the clinical course of pneumonia. Methods: The EDTA blood was drawn from 24 normal controls and same numbers of pneumonia patients. The respiratory burst activity(with the production of $H_2O_2$ which changes nonfluorescent DCF-DA to green fluorescent DCF) in the non-stimulated state and the stimulated state with fMLP and PMA of neutrophils was measured by flowcytometry at day 1, 3, 5, 7 and 9 of admission. Results: The respiratory burst activity of neutrophils was mildly increased by stimulation with fMLP. But there was no statistical significance between normal control and patients with pneumonia. The respiratory burst activity of neutrophils was markedly increased by stimulation with PMA in both groups. There was a significant difference in response to PMA between normal control and patients with pneumonia. The production of hydrogen peroxide from neutrophils was decreased during early course of pneumonia and it was recuperated gradually to normal level in 9 days. Conclusion : Hydrogen peroxide production from neutrophils was suppressed during early course of pneumonia and restored after treatment. It is suggested that the production of oxygen radical in response to PMA stimulation from each neutrophils is decreased rather than increased during the early course of pneumonia.

  • PDF

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

Comparison of the Medication Effects between Milnacipran and Pregabalin in Fibromyalgia Syndrome Using a Functional MRI: a Follow-up Study (섬유근통 환자에 대한 Milnacipran과 Pregabalin 약물치료에 대한 기능적 자기공명영상에서의 후속 영향 비교)

  • Kang, Min Jae;Mun, Chi-Woong;Lee, Young Ho;Kim, Seong-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.341-351
    • /
    • 2014
  • Purpose : In this study, the medication effects of Milnacipran and Pregabalin, as well known as fibromyalgia treatment medicine, in fibromyalgia syndrome patients were compared through the change of BOLD signal in pain related functional MRI. Materials and Methods: Twenty fibromyalgia syndrome patients were enrolled in this study and they were separated into two groups according to the treatment medicine: 10 Milnacipran (MLN) treatment group and 7 Pregabalin (PGB) treatment group. For accurate diagnosis, all patients underwent several clinical tests. Pre-treated and post-treated fMRI image with block-designed pressure-pain stimulation for each group were obtained to conduct the statistical analysis of paired t-test and two sample t-test. All statistical significant level was less than 0.05. Results: In clinical tests, the clinical scores of the two groups were not significantly different at pre-treatment stage. But, PGB treatment group had lower Widespread Pain Index (WPI) and Brief Fatigue Inventory (BFI) score than those of MLN treatment group at post-treatment stage. In functional image analysis, BOLD signal of PGB treatment group was higher BOLD signal at several regions including anterior cingulate and insula than MLN treatment group at post-treatment stage. Also, paired t-test values of the BOLD signal in MLN group decreased in several regions including insula and thalamus as known as 'pain network'. In contrast, size and number of regions in which the BOLD signal decreased in PGB treatment group were smaller than those of MLN treatment group. Conclusion: This study showed that MLN group and PGB group have different medication effects. It is not surprising that MLN and PGB have not the same therapeutic effects since these two drugs have different medicinal mechanisms such as antidepressants and anti-seizure medication, respectively, and different detailed target of fibromyalgia syndrome treatment. Therefore, it is difficult to say which medicine will work better in this study.